TreeSet底层是采用TreeMap实现的一种Set,所以它是有序的,同样也是非线程安全的。
经过前面我们学习HashSet和LinkedHashSet,基本上已经掌握了Set实现的套路了。
所以,也不废话了,直接上源码:
package java.util; // TreeSet实现了NavigableSet接口,所以它是有序的 public class TreeSet<E> extends AbstractSet<E> implements NavigableSet<E>, Cloneable, java.io.Serializable { // 元素存储在NavigableMap中 // 注意它不一定就是TreeMap private transient NavigableMap<E,Object> m; // 虚拟元素, 用来作为value存储在map中 private static final Object PRESENT = new Object(); // 直接使用传进来的NavigableMap存储元素 // 这里不是深拷贝,如果外面的map有增删元素也会反映到这里 // 而且, 这个方法不是public的, 说明只能给同包使用 TreeSet(NavigableMap<E,Object> m) { this.m = m; } // 使用TreeMap初始化 public TreeSet() { this(new TreeMap<E,Object>()); } // 使用带comparator的TreeMap初始化 public TreeSet(Comparator<? super E> comparator) { this(new TreeMap<>(comparator)); } // 将集合c中的所有元素添加的TreeSet中 public TreeSet(Collection<? extends E> c) { this(); addAll(c); } // 将SortedSet中的所有元素添加到TreeSet中 public TreeSet(SortedSet<E> s) { this(s.comparator()); addAll(s); } // 迭代器 public Iterator<E> iterator() { return m.navigableKeySet().iterator(); } // 逆序迭代器 public Iterator<E> descendingIterator() { return m.descendingKeySet().iterator(); } // 以逆序返回一个新的TreeSet public NavigableSet<E> descendingSet() { return new TreeSet<>(m.descendingMap()); } // 元素个数 public int size() { return m.size(); } // 判断是否为空 public boolean isEmpty() { return m.isEmpty(); } // 判断是否包含某元素 public boolean contains(Object o) { return m.containsKey(o); } // 添加元素, 调用map的put()方法, value为PRESENT public boolean add(E e) { return m.put(e, PRESENT)==null; } // 删除元素 public boolean remove(Object o) { return m.remove(o)==PRESENT; } // 清空所有元素 public void clear() { m.clear(); } // 添加集合c中的所有元素 public boolean addAll(Collection<? extends E> c) { // 满足一定条件时直接调用TreeMap的addAllForTreeSet()方法添加元素 if (m.size()==0 && c.size() > 0 && c instanceof SortedSet && m instanceof TreeMap) { SortedSet<? extends E> set = (SortedSet<? extends E>) c; TreeMap<E,Object> map = (TreeMap<E, Object>) m; Comparator<?> cc = set.comparator(); Comparator<? super E> mc = map.comparator(); if (cc==mc || (cc != null && cc.equals(mc))) { map.addAllForTreeSet(set, PRESENT); return true; } } // 不满足上述条件, 调用父类的addAll()通过遍历的方式一个一个地添加元素 return super.addAll(c); } // 子set(NavigableSet中的方法) public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { return new TreeSet<>(m.subMap(fromElement, fromInclusive, toElement, toInclusive)); } // 头set(NavigableSet中的方法) public NavigableSet<E> headSet(E toElement, boolean inclusive) { return new TreeSet<>(m.headMap(toElement, inclusive)); } // 尾set(NavigableSet中的方法) public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { return new TreeSet<>(m.tailMap(fromElement, inclusive)); } // 子set(SortedSet接口中的方法) public SortedSet<E> subSet(E fromElement, E toElement) { return subSet(fromElement, true, toElement, false); } // 头set(SortedSet接口中的方法) public SortedSet<E> headSet(E toElement) { return headSet(toElement, false); } // 尾set(SortedSet接口中的方法) public SortedSet<E> tailSet(E fromElement) { return tailSet(fromElement, true); } // 比较器 public Comparator<? super E> comparator() { return m.comparator(); } // 返回最小的元素 public E first() { return m.firstKey(); } // 返回最大的元素 public E last() { return m.lastKey(); } // 返回小于e的最大的元素 public E lower(E e) { return m.lowerKey(e); } // 返回小于等于e的最大的元素 public E floor(E e) { return m.floorKey(e); } // 返回大于等于e的最小的元素 public E ceiling(E e) { return m.ceilingKey(e); } // 返回大于e的最小的元素 public E higher(E e) { return m.higherKey(e); } // 弹出最小的元素 public E pollFirst() { Map.Entry<E,?> e = m.pollFirstEntry(); return (e == null) ? null : e.getKey(); } public E pollLast() { Map.Entry<E,?> e = m.pollLastEntry(); return (e == null) ? null : e.getKey(); } // 克隆方法 @SuppressWarnings("unchecked") public Object clone() { TreeSet<E> clone; try { clone = (TreeSet<E>) super.clone(); } catch (CloneNotSupportedException e) { throw new InternalError(e); } clone.m = new TreeMap<>(m); return clone; } // 序列化写出方法 private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out any hidden stuff s.defaultWriteObject(); // Write out Comparator s.writeObject(m.comparator()); // Write out size s.writeInt(m.size()); // Write out all elements in the proper order. for (E e : m.keySet()) s.writeObject(e); } // 序列化写入方法 private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in any hidden stuff s.defaultReadObject(); // Read in Comparator @SuppressWarnings("unchecked") Comparator<? super E> c = (Comparator<? super E>) s.readObject(); // Create backing TreeMap TreeMap<E,Object> tm = new TreeMap<>(c); m = tm; // Read in size int size = s.readInt(); tm.readTreeSet(size, s, PRESENT); } // 可分割的迭代器 public Spliterator<E> spliterator() { return TreeMap.keySpliteratorFor(m); } // 序列化id private static final long serialVersionUID = -2479143000061671589L; } 复制代码
源码比较简单,基本都是调用map相应的方法。
(1)TreeSet底层使用NavigableMap存储元素;
(2)TreeSet是有序的;
(3)TreeSet是非线程安全的;
(4)TreeSet实现了NavigableSet接口,而NavigableSet继承自SortedSet接口;
(5)TreeSet实现了SortedSet接口;(彤哥年轻的时候面试被问过TreeSet和SortedSet的区别^^)
(1)通过之前的学习,我们知道TreeSet和LinkedHashSet都是有序的,那它们有何不同?
LinkedHashSet并没有实现SortedSet接口,它的有序性主要依赖于LinkedHashMap的有序性,所以它的有序性是指按照插入顺序保证的有序性;
而TreeSet实现了SortedSet接口,它的有序性主要依赖于NavigableMap的有序性,而NavigableMap又继承自SortedMap,这个接口的有序性是指按照key的自然排序保证的有序性,而key的自然排序又有两种实现方式,一种是key实现Comparable接口,一种是构造方法传入Comparator比较器。
(2)TreeSet里面真的是使用TreeMap来存储元素的吗?
通过源码分析我们知道TreeSet里面实际上是使用的NavigableMap来存储元素,虽然大部分时候这个map确实是TreeMap,但不是所有时候都是TreeMap。
因为有一个构造方法是 TreeSet(NavigableMap<E,Object> m)
,而且这是一个非public方法,通过调用关系我们可以发现这个构造方法都是在自己类中使用的,比如下面这个:
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { return new TreeSet<>(m.tailMap(fromElement, inclusive)); } 复制代码
而这个m我们姑且认为它是TreeMap,也就是调用TreeMap的tailMap()方法:
public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) { return new AscendingSubMap<>(this, false, fromKey, inclusive, true, null, true); } 复制代码
可以看到,返回的是AscendingSubMap对象,这个类的继承链是怎么样的呢?
可以看到,这个类并没有继承TreeMap,不过通过源码分析也可以看出来这个类是组合了TreeMap,也算和TreeMap有点关系,只是不是继承关系。
所以,TreeSet的底层不完全是使用TreeMap来实现的,更准确地说,应该是NavigableMap。
欢迎关注我的公众号“彤哥读源码”,查看更多源码系列文章, 与彤哥一起畅游源码的海洋。