有一类业务场景,没有固定的schema存储,却有着海量的数据行数,架构上如何来实现这类业务的存储与检索呢?58最核心的数据“帖子”的架构实现技术细节,今天和大家聊一聊。
一、背景描述及业务介绍
什么是58最核心的数据?
58是一个信息平台,有很多垂直品类:招聘、房产、二手物品、二手车、黄页等等,每个品类又有很多子品类,不管哪个品类,最核心的数据都是“帖子信息”。
画外音:像不像一个大论坛?
各分类帖子的信息有什么特点?
逛过58的朋友很容易了解到,这里的帖子信息:
(1) 各品类的属性千差万别 ,招聘帖子和二手帖子属性完全不同,二手手机和二手家电的属性又完全不同,目前恐怕有近 万个属性 ;
(2) 数据量巨大 , 100亿 级别;
(3) 每个属性上都有查询需求 ,各组合属性上都可能有组合查询需求,招聘要查职位/经验/薪酬范围,二手手机要查颜色/价格/型号,二手要查冰箱/洗衣机/空调;
(4) 吞吐量很大 ,每秒几 10万吞吐 ;
如何解决100亿数据量,1万属性,多属性组合查询,10万并发查询的技术难题呢?一步步来。
二、最容易想到的方案
每个公司的发展都是一个从小到大的过程,撇开并发量和数据量不谈,先看看
(1)如何实现属性扩展性需求;
(2)多属性组合查询需求;
画外音:公司初期并发量和数据量都不大,必须先解决业务问题。
如何满足业务的存储需求呢?
最开始,业务只有一个招聘品类,那帖子表可能是这么设计的:
tiezi(tid, uid, c1, c2, c3);
那如何满足各属性之间的组合查询需求呢?
最容易想到的是 通过组合索引满足查询需求 :
index_1(c1, c2)
index_2(c2, c3)
index_3(c1, c3)
随着业务的发展,又新增了一个房产类别,存储问题又该如何解决呢?
可以 新增若干属性满足存储需求 ,于是帖子表变成了:
tiezi(tid, uid, c1, c2, c3, c10, c11, c12, c13);
其中:
c1,c2,c3是招聘类别属性
c10,c11,c12,c13是房产类别属性
通过扩展属性,可以解决存储的问题。
查询需求,又该如何满足呢?
首先,跨业务属性一般没有组合查询需求。只能 建立了若干组合索引,满足房产类别的查询需求 。
画外音:不敢想有多少个索引能覆盖所有两属性查询,三属性查询。
当业务越来越多时,是不是发现玩不下去了?
三、垂直拆分是一个思路
新增属性是一种扩展方式,新增表也是一种方式, 垂直拆分也是常见的存储扩展方案 。
如何按照业务进行垂直拆分?
可以这么玩:
tiezi_zhaopin(tid, uid, c1, c2, c3);
tiezi_fangchan(tid, uid, c10, c11, c12, c13);
在业务各异,数据量和吞吐量都巨大的情况下,垂直拆分会遇到什么问题呢?
这些表,以及对应的服务维护在不同的部门,看上去各业务灵活性强, 研发闭环 ,这恰恰是悲剧的开始:
(1)tid如何规范?
(2)属性如何规范?
(3)按照uid来查询怎么办(查询自己发布的所有帖子)?
(4)按照时间来查询怎么办(最新发布的帖子)?
(5)跨品类查询怎么办(例如首页搜索框)?
(6)技术范围的扩散,有的用mongo存储,有的用mysql存储,有的自研存储;
(7)重复开发了不少组件;
(8)维护成本过高;
(9)…
画外音:想想看,电商的商品表,不可能一个类目一个表的。
四、58的玩法:三大中心服务
第一:统一帖子中心服务
平台型 创业型公司,可能有多个品类,各品类有很多异构数据的存储需求,到底是分还是合,无需纠结: 基础数据基础服务的统一 ,是一个很好的实践。
画外音:这里说的是平台型业务。
如何将不同品类,异构的数据统一存储起来呢?
(1)全品类 通用属性统一存储 ;
(2)单品类 特有属性,品类类型与通用属性json来进行存储 ;
更具体的:
tiezi(tid, uid, time, title, cate, subcate, xxid, ext);
(1)一些通用的字段抽取出来单独存储;
(2)通过cate, subcate, xxid等来定义ext是何种含义;
(3)通过ext来存储不同业务线的个性化需求
例如:
招聘的帖子,ext为:
{“job”:”driver”,”salary”:8000,”location”:”bj”}
而二手的帖子,ext为:
{”type”:”iphone”,”money”:3500}
帖子数据,100亿的数据量,分256库,通过ext存储异构业务数据,使用mysql存储,上层架了一个帖子中心服务,使用memcache做缓存,就是这样一个并不复杂的架构,解决了业务的大问题。 这是58最核心的帖子中心服务IMC (Info Management Center) 。
画外音:该服务的底层存储在16年全面切换为了自研存储引擎,替换了mysql,但架构理念仍未变。
解决了海量异构数据的存储问题,遇到的 新问题 是:
(1)每条记录ext内key都需要重复存储,占据了大量的空间, 能否压缩存储 ;
(2)cateid已经不足以描述ext内的内容,品类有层级,深度不确定, ext能否具备自描述性 ;
(3)随时可以增加属性,保证 扩展性 ;
解决完海量异构数据的存储问题,接下来,要解决的是类目的扩展性问题。
第二:统一类目属性服务
每个业务有多少属性,这些属性是什么含义,值的约束等, 耦合到帖子服务里 显然是不合理的,那怎么办呢?
抽象出一个统一的类目、属性服务,单独来管理这些信息,而帖子库ext字段里json的key,统一由数字来表示,减少存储空间。
画外音:帖子表只存元信息,不管业务含义。
如上图所示,json里的key不再是”salary” ”location” ”money” 这样的长字符串了,取而代之的是数字1,2,3,4,这些数字是什么含义,属于哪个子分类,值的校验约束,统一都存储在类目、属性服务里。
画外音:类目表存业务信息,以及约束信息,与帖子表解耦。
这个表里对帖子中心服务里ext字段里的数字key进行了解释:
(1)1代表job,属于招聘品类下100子品类,其value必须是一个小于32的[a-z]字符;
(2)4代表type,属于二手品类下200子品类,其value必须是一个short;
这样就对原来帖子表ext扩展属性:
{“1”:”driver”,”2”:8000,”3”:”bj”}
{”4”:”iphone”,”5”:3500}
key和value都做了统一约束 。
除此之外,如果ext里某个key的value不是正则校验的值,而是枚举值时,需要有一个对值进行限定的枚举表来进行校验:
这个枚举校验,说明key=4的属性(对应属性表里二手,手机类型字段),其值不只是要进行“short类型”校验,而是value必须是固定的枚举值。
{”4”:”iphone”,”5”:3500}
这个ext就是不合法的,key=4的value=iphone不合法,而应该是枚举属性,合法的应该为:
{”4”:”5”,”5”:3500}
此外, 类目属性服务还能记录类目之间的层级关系 :
(1)一级类目是招聘、房产、二手…
(2)二手下有二级类目二手家具、二手手机…
(3)二手手机下有三级类目二手iphone,二手小米,二手三星…
(4)…
类目服务 解释了帖子数据,描述品类层级关系,保证各类目属性扩展性,保证各属性值合理性校验 ,就是58另一个统一的核心服务CMC (Category Management Center) 。
画外音:类目、属性服务像不像电商系统里的SKU扩展服务?
(1)品类层级关系,对应电商里的类别层级体系;
(2)属性扩展,对应电商里各类别商品SKU的属性;
(3)枚举值校验,对应属性的枚举值,例如颜色:红,黄,蓝;
通过品类服务,解决了key压缩,key描述,key扩展,value校验,品类层级的问题,还有这样的一个问题没有解决:每个品类下帖子的属性各不相同,查询需求各不相同, 如何解决100亿数据量,1万属性的检索与联合检索需求呢?
第三:统一检索服务
数据量很大的时候,不同属性上的查询需求,不可能通过组合索引来满足所有查询需求, “外置索引,统一检索服务”是一个很常用的实践 :
(1)数据库提供“帖子id”的正排查询需求;
(2)所有非“帖子id”的个性化检索需求,统一走外置索引;
元数据与索引数据的操作遵循:
(1)对帖子进行tid正排查询,直接访问帖子服务;
(2)对帖子进行修改,帖子服务通知检索服务,同时对索引进行修改;
(3)对帖子进行复杂查询,通过检索服务满足需求;
画外音:这个检索服务,扛起了58同城80%的请求(不管来自PC还是APP,不管是主页、城市页、分类页、列表页、详情页,最终都会转化为一个检索请求),它就是58另一个统一的核心服务E-search,这个搜索引擎,是完全自研的。
对于这个内核自研服务的搜索引擎架构,简单说明一下:
为应对100亿级别数据量、几十万级别的吞吐量,业务线各种复杂的复杂检索查询, 扩展性是设计重点 :
(1)统一的 代理层 ,作为入口,其无状态性能够保证增加机器就能扩充系统性能;
(2)统一的 结果聚合层 ,其无状态性也能够保证增加机器就能扩充系统性能;
(3)搜索内核 检索层 ,服务和索引数据部署在同一台机器上,服务启动时可以加载索引数据到内存,请求访问时从内存中load数据,访问速度很快:
为了满足数据 容量的扩展性 ,索引数据进行了水平切分,增加切分份数,就能够无限扩展性能
为了满足一份 数据的性能扩展性 ,同一份数据进行了冗余,理论上做到增加机器就无限扩展性能
系统时延,100亿级别帖子检索,包含请求分合,拉链求交集,从聚合层均可以做到10ms返回。
画外音:入口层是Java研发的,聚合层与检索层都是C语言研发的。
帖子业务,一致性不是主要矛盾,E-search会 定期全量重建索引 ,以保证即使数据不一致,也不会持续很长的时间。
五、总结
文章写了很长,最后做一个简单总结,面对100亿数据量,1万列属性,10万吞吐量的业务需求,可以采用了 元数据服务、属性服务、搜索服务来 解决:
一个解决存储问题
一个解决品类解耦问题
一个解决检索问题
任何复杂问题的解决,都是 循序渐进 的。
思路 比结论重要,希望大家有收获。
架构师之路-分享技术思路
最近文章:
《 ServiceMesh究竟解决什么问题? 》
《 Istio究竟是什么? 》
《 Istio分层架构设计 》
画外音:ServiceMesh与Istio阅读不高,后续可能不展开写了。
相关文章:
《 “搜索”的原理,架构,实现,实践 》