Object类是Java中所有类的父类, 在线程间实现通信的往往会应用到Object的几个方法: wait(),wait(long timeout),wait(long timeout, int nanos)与notify(),notifyAll() 实现等待/通知机制,同样的, 在Java Lock体系下依然会有同样的方法实现等待/通知机制。 从整体上来看Object的wait和notify/notify是与对象监视器配合完成线程间的等待/通知机制,Condition与Lock配合完成等待/通知机制, 前者是Java底层级别的,后者是语言级别的,具有更高的可控制性和扩展性。 两者除了在使用方式上不同外,在功能特性上还是有很多的不同:
Condition能够支持不响应中断,而通过使用Object方式不支持
Condition能够支持多个等待队列(new 多个Condition对象),而Object方式只能支持一个
Condition能够支持超时时间的设置,而Object不支持
参照Object的wait和notify/notifyAll方法,Condition也提供了同样的方法:
针对Object的wait方法
void await() throws InterruptedException//当前线程进入等待状态,如果在等待状态中被中断会抛出被中断异常long awaitNanos(long nanosTimeout)//当前线程进入等待状态直到被通知,中断或者超时boolean await(long time, TimeUnit unit)throws InterruptedException//同第二种,支持自定义时间单位boolean awaitUntil(Date deadline) throws InterruptedException//当前线程进入等待状态直到被通知,中断或者到了某个时间复制代码
针对Object的notify/notifyAll方法
void signal()//唤醒一个等待在condition上的线程,将该线程从等待队列中转移到同步队列中,如果在同步队列中能够竞争到Lock则可以从等待方法中返回。void signalAll()//与1的区别在于能够唤醒所有等待在condition上的线程复制代码
创建一个Condition对象是通过lock.newCondition(), 而这个方法实际上是会创建ConditionObject对象,该类是AQS的一个内部类。 Condition是要和Lock配合使用的也就是Condition和Lock是绑定在一起的,而lock的实现原理又依赖于AQS, 自然而然ConditionObject作为AQS的一个内部类无可厚非。 我们知道在锁机制的实现上,AQS内部维护了一个同步队列,如果是独占式锁的话, 所有获取锁失败的线程的尾插入到同步队列, 同样的,Condition内部也是使用同样的方式,内部维护了一个等待队列, 所有调用condition.await方法的线程会加入到等待队列中,并且线程状态转换为等待状态。 另外注意到ConditionObject中有两个成员变量:
/** First node of condition queue. */private transient Node firstWaiter;/** Last node of condition queue. */private transient Node lastWaiter;复制代码
ConditionObject通过持有等待队列的头尾指针来管理等待队列。 注意Node类复用了在AQS中的Node类,Node类有这样一个属性:
//后继节点Node nextWaiter;复制代码
等待队列是一个单向队列,而在之前说AQS时知道同步队列是一个双向队列。
等待队列示意图:
注意: 我们可以多次调用lock.newCondition()方法创建多个Condition对象,也就是一个lLock可以持有多个等待队列。 利用Object的方式实际上是指在对象Object对象监视器上只能拥有一个同步队列和一个等待队列; 并发包中的Lock拥有一个同步队列和多个等待队列。示意图如下:
ConditionObject是AQS的内部类, 因此每个ConditionObject能够访问到AQS提供的方法,相当于每个Condition都拥有所属同步器的引用。
当调用condition.await()方法后会使得当前获取lock的线程进入到等待队列, 如果该线程能够从await()方法返回的话一定是该线程获取了与condition相关联的lock。 await()方法源码如下:
public final void await() throws InterruptedException { if (Thread.interrupted()) throw new InterruptedException(); // 1. 将当前线程包装成Node,尾插法插入到等待队列中 Node node = addConditionWaiter(); // 2. 释放当前线程所占用的lock,在释放的过程中会唤醒同步队列中的下一个节点 int savedState = fullyRelease(node); int interruptMode = 0; while (!isOnSyncQueue(node)) { // 3. 当前线程进入到等待状态 LockSupport.park(this); if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) break; } // 4. 自旋等待获取到同步状态(即获取到lock) if (acquireQueued(node, savedState) && interruptMode != THROW_IE) interruptMode = REINTERRUPT; if (node.nextWaiter != null) // clean up if cancelled unlinkCancelledWaiters(); // 5. 处理被中断的情况 if (interruptMode != 0) reportInterruptAfterWait(interruptMode); }复制代码
当前线程调用condition.await()方法后,会使得当前线程释放lock然后加入到等待队列中, 直至被signal/signalAll后会使得当前线程从等待队列中移至到同步队列中去, 直到获得了lock后才会从await方法返回,或者在等待时被中断会做中断处理。
addConditionWaiter()将当前线程添加到等待队列中,其源码如下:
private Node addConditionWaiter() { Node t = lastWaiter; // If lastWaiter is cancelled, clean out. if (t != null && t.waitStatus != Node.CONDITION) { unlinkCancelledWaiters(); t = lastWaiter; } //将当前线程包装成Node Node node = new Node(Thread.currentThread(), Node.CONDITION); if (t == null) //t==null,同步队列为空的情况 firstWaiter = node; else //尾插法 t.nextWaiter = node; //更新lastWaiter lastWaiter = node; return node; }复制代码
这里通过尾插法将当前线程封装的Node插入到等待队列中, 同时可以看出等待队列是一个不带头结点的链式队列,之前我们学习AQS时知道同步队列是一个带头结点的链式队列。
将当前节点插入到等待对列之后,使用fullyRelease(0)方法释放当前线程释放lock,源码如下:
final int fullyRelease(Node node) { boolean failed = true; try { int savedState = getState(); if (release(savedState)) { //成功释放同步状态 failed = false; return savedState; } else { //不成功释放同步状态抛出异常 throw new IllegalMonitorStateException(); } } finally { if (failed) node.waitStatus = Node.CANCELLED; } }复制代码
调用AQS的模板方法release()方法释放AQS的同步状态并且唤醒在同步队列中头结点的后继节点引用的线程, 如果释放成功则正常返回,若失败的话就抛出异常。
如何从await()方法中退出?再看await()方法有这样一段代码:
while (!isOnSyncQueue(node)) { // 3. 当前线程进入到等待状态 LockSupport.park(this); if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) break; }复制代码
当线程第一次调用condition.await()方法时, 会进入到这个while()循环中,然后通过LockSupport.park(this)方法使得当前线程进入等待状态, 那么要想退出这个await方法就要先退出这个while循环,退出while循环的出口有2个:
break退出while循环
while循环中的逻辑判断为false
第1种情况的条件是当前等待的线程被中断后会走到break退出,
第2种情况是当前节点被移动到了同步队列中,(即另外线程调用的condition的signal或者signalAll方法), while中逻辑判断为false后结束while循环。
当退出while循环后就会调用acquireQueued(node, savedState),该方法的作用是 在自旋过程中线程不断尝试获取同步状态,直至成功(线程获取到lock)。
这样就说明了退出await方法必须是已经获得了Condition引用(关联)的Lock。
await方法示意图如下:
调用condition.await方法的线程必须是已经获得了lock,也就是当前线程是同步队列中的头结点。 调用该方法后会使得当前线程所封装的Node尾插入到等待队列中。
超时机制的支持
condition还额外支持了超时机制,使用者可调用方法awaitNanos,awaitUtil。 这两个方法的实现原理,基本上与AQS中的tryAcquire方法如出一辙。
不响应中断的支持
调用condition.awaitUninterruptibly()方法,该方法的源码为:
public final void awaitUninterruptibly() { Node node = addConditionWaiter(); int savedState = fullyRelease(node); boolean interrupted = false; while (!isOnSyncQueue(node)) { LockSupport.park(this); if (Thread.interrupted()) interrupted = true; } if (acquireQueued(node, savedState) || interrupted) selfInterrupt(); }复制代码
与上面的await方法基本一致,只不过减少了对中断的处理, 并省略了reportInterruptAfterWait方法抛被中断的异常。
调用Condition的signal或者signalAll方法可以将 等待队列中等待时间最长的节点移动到同步队列中,使得该节点能够有机会获得lock。 按照等待队列是先进先出(FIFO)的, 所以等待队列的头节点必然会是等待时间最长的节点, 也就是每次调用condition的signal方法是将头节点移动到同步队列中。 signal()源码如下:
public final void signal() { //1. 先检测当前线程是否已经获取lock if (!isHeldExclusively()) throw new IllegalMonitorStateException(); //2. 获取等待队列中第一个节点,之后的操作都是针对这个节点 Node first = firstWaiter; if (first != null) doSignal(first); }复制代码
signal方法首先会检测当前线程是否已经获取lock, 如果没有获取lock会直接抛出异常,如果获取的话再得到等待队列的头指针引用的节点,doSignal方法也是基于该节点。 doSignal方法源码如下:
private void doSignal(Node first) { do { if ( (firstWaiter = first.nextWaiter) == null) lastWaiter = null; //1. 将头结点从等待队列中移除 first.nextWaiter = null; //2. while中transferForSignal方法对头结点做真正的处理 } while (!transferForSignal(first) && (first = firstWaiter) != null); }复制代码
真正对头节点做处理的是transferForSignal(),该方法源码如下:
final boolean transferForSignal(Node node) { //1. 更新状态为0 if (!compareAndSetWaitStatus(node, Node.CONDITION, 0)) return false; //2.将该节点移入到同步队列中去 Node p = enq(node); int ws = p.waitStatus; if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL)) LockSupport.unpark(node.thread); return true; }复制代码
这段代码主要做了两件事情:
1.将头结点的状态更改为CONDITION
2.调用enq方法,将该节点尾插入到同步队列中
调用condition的signal的前提条件是 当前线程已经获取了lock,该方法会使得等待队列中的头节点(等待时间最长的那个节点)移入到同步队列, 而移入到同步队列后才有机会使得等待线程被唤醒, 即从await方法中的LockSupport.park(this)方法中返回,从而才有机会使得调用await方法的线程成功退出。
signal方法示意图如下:
signalAll
sigllAll与sigal方法的区别体现在doSignalAll方法上。doSignalAll()的源码如下:
private void doSignalAll(Node first) { lastWaiter = firstWaiter = null; do { Node next = first.nextWaiter; first.nextWaiter = null; transferForSignal(first); first = next; } while (first != null); }复制代码
doSignal方法只会对等待队列的头节点进行操作,而doSignalAll方法将等待队列中的每一个节点都移入到同步队列中, 即“通知”当前调用condition.await()方法的每一个线程。
await和signal和signalAll方法就像一个开关控制着线程A(等待方)和线程B(通知方)。 它们之间的关系可以用下面一个图来表现得更加贴切:
线程awaitThread先通过lock.lock()方法获取锁成功后调用了condition.await方法进入等待队列, 而另一个线程signalThread通过lock.lock()方法获取锁成功后调用了condition.signal或者signalAll方法, 使得线程awaitThread能够有机会移入到同步队列中, 当其他线程释放lock后使得线程awaitThread能够有机会获取lock, 从而使得线程awaitThread能够从await方法中退出,然后执行后续操作。 如果awaitThread获取lock失败会直接进入到同步队列。