前面的几篇文章分别介绍了CURD中的增删改,接下来进入最最常见的查询篇,看一下使用jpa进行db的记录查询时,可以怎么玩
本篇将介绍一些基础的查询使用姿势,主要包括根据字段查询, and/or/in/like/between
语句,数字比较,排序以及分页
在开始之前,当然得先准备好基础环境,如安装测试使用mysql,创建SpringBoot项目工程,设置好配置信息等,关于搭建项目的详情可以参考前一篇文章
下面简单的看一下演示添加记录的过程中,需要的配置
沿用前一篇的表,结构如下
CREATE TABLE `money` ( `id` int(11) unsigned NOT NULL AUTO_INCREMENT, `name` varchar(20) NOT NULL DEFAULT '' COMMENT '用户名', `money` int(26) NOT NULL DEFAULT '0' COMMENT '钱', `is_deleted` tinyint(1) NOT NULL DEFAULT '0', `create_at` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间', `update_at` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间', PRIMARY KEY (`id`), KEY `name` (`name`) ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4;
配置信息,与之前有一点点区别,我们新增了更详细的日志打印;本篇主要目标集中在添加记录的使用姿势,对于配置说明,后面单独进行说明
## DataSource spring.datasource.url=jdbc:mysql://127.0.0.1:3306/story?useUnicode=true&characterEncoding=UTF-8&useSSL=false spring.datasource.driver-class-name=com.mysql.jdbc.Driver spring.datasource.username=root spring.datasource.password= ## jpa相关配置 spring.jpa.database=MYSQL spring.jpa.hibernate.ddl-auto=none spring.jpa.show-sql=true spring.jackson.serialization.indent_output=true spring.jpa.hibernate.naming.physical-strategy=org.hibernate.boot.model.naming.PhysicalNamingStrategyStandardImpl
数据修改嘛,所以我们先向表里面插入两条数据,用于后面的操作
INSERT INTO `money` (`id`, `name`, `money`, `is_deleted`, `create_at`, `update_at`) VALUES (1, '一灰灰blog', 100, 0, '2019-04-18 17:01:40', '2019-04-18 17:01:40'), (2, '一灰灰2', 200, 0, '2019-04-18 17:01:40', '2019-04-18 17:01:40'), (3, '一灰灰3', 300, 0, '2019-04-18 17:01:40', '2019-04-18 17:01:40'), (4, '一灰灰4', 400, 0, '2019-04-18 17:01:40', '2019-04-18 17:01:40'), (5, '一灰灰5', 500, 0, '2019-04-18 17:01:40', '2019-04-18 17:01:40'), (6, 'Batch 一灰灰blog', 100, 0, '2019-04-18 17:01:40', '2019-04-18 17:01:40'), (7, 'Batch 一灰灰blog 2', 100, 0, '2019-04-18 17:01:40', '2019-04-18 17:01:40'), (8, 'Batch 一灰灰 3', 200, 0, '2019-04-18 17:01:40', '2019-04-18 17:01:40'), (9, 'Batch 一灰灰 4', 200, 0, '2019-04-18 17:01:40', '2019-04-18 17:01:40'), (10, 'batch 一灰灰5', 1498, 0, '2019-04-18 17:01:40', '2019-04-18 17:01:58'), (11, 'batch 一灰灰6', 1498, 0, '2019-04-18 17:01:40', '2019-04-18 17:01:58'), (12, 'batch 一灰灰7', 400, 0, '2019-04-18 17:01:40', '2019-04-18 17:01:40'), (13, 'batch 一灰灰8', 400, 0, '2019-04-18 17:01:40', '2019-04-18 17:01:40');
下面进入简单的查询操作姿势介绍,单表的简单and/or/in/compare查询方式
查询返回的记录与一个实体类POJO进行绑定,借助前面的分析结果,如下
@Data @DynamicUpdate @DynamicInsert @Entity @Table(name = "money") public class MoneyPO { @Id // 如果是auto,则会报异常 Table 'mysql.hibernate_sequence' doesn't exist // @GeneratedValue(strategy = GenerationType.AUTO) @GeneratedValue(strategy = GenerationType.IDENTITY) @Column(name = "id") private Integer id; @Column(name = "name") private String name; @Column(name = "money") private Long money; @Column(name = "is_deleted") private Byte isDeleted; @Column(name = "create_at") @CreatedDate private Timestamp createAt; @Column(name = "update_at") @CreatedDate private Timestamp updateAt; }
上面类中的几个注解,说明如下
@Data
属于lombok注解,与jpa无关,自动生成 getter/setter/equals/hashcode/tostring
等方法 @Entity
, @Table
jpa注解,表示这个类与db的表关联,具体匹配的是表 money
@Id
@GeneratedValue
作用与自增主键 @Column
表明这个属性与表中的某列对应 @CreateDate
根据当前时间来生成默认的时间戳 接下来我们新建一个api继承自 CurdRepository
,然后通过这个api来与数据库打交道,后面会在这个类中添加较多的查询方法
public interface MoneyBaseQueryRepository extends CrudRepository<MoneyPO, Integer> { }
CrudRepository
已经提供的功能,根据主键id进行查询,对于使用者而言,没有什么需要额外操作的,直接访问即可
private void queryById() { // 根据主键查询,直接使用接口即可 Optional<MoneyPO> res = moneyCurdRepository.findById(1); System.out.println("queryById return: " + res.get()); }
除了根据主键查询,实际的业务场景中,根据某个字段进行查询的case,简直不要更多,在jpa中可以怎么做呢?
Repository
接口中声明一个方法,命名规则为 一个简单的case,如果我希望实现根据name进行查询,那么在 MoneyBaseQueryRepository
中添加下面两个方法中的任意一个都可以
/** * 根据用户名查询 * * @param name * @return */ List<MoneyPO> findByName(String name); List<MoneyPO> queryByName(String name);
如果需要多个成员的查询呢?也简单,形如 findByXxxAndYyyy
相当于sql中的 where xxxx=? and yyy=?
如我们也可以增加下面两个方法(一个and、一个or查询)
/** * 根据用户名 + money查询 * * @param name * @param money * @return */ List<MoneyPO> findByNameAndMoney(String name, Long money); /** * 根据用户名 or id查询 * * @param name * @param id * @return */ List<MoneyPO> findByNameOrId(String name, Integer id);
一个简单的测试case可以如下
private void queryByField() { // 根据内部成员进行查询,需要自己定义新的接口 String name = "一灰灰blog"; Iterable<MoneyPO> res = moneyCurdRepository.findByName(name); System.out.println("findByName return: " + res); res = moneyCurdRepository.queryByName(name); System.out.println("queryByName return: " + res); Long money = 100L; res = moneyCurdRepository.findByNameAndMoney(name, money); System.out.println("findByNameAndMoney return: " + res); Integer id = 5; res = moneyCurdRepository.findByNameOrId(name, id); System.out.println("findByNameOrId return: " + res); }
执行之后输出结果如下,下面也包括了对应的sql,便于理解
Hibernate: select moneypo0_.id as id1_0_, moneypo0_.create_at as create_a2_0_, moneypo0_.is_deleted as is_delet3_0_, moneypo0_.money as money4_0_, moneypo0_.name as name5_0_, moneypo0_.update_at as update_a6_0_ from money moneypo0_ where moneypo0_.name=? findByName return: [MoneyPO(id=1, name=一灰灰blog, money=100, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0)] -------- 人工拆分 ----------- Hibernate: select moneypo0_.id as id1_0_, moneypo0_.create_at as create_a2_0_, moneypo0_.is_deleted as is_delet3_0_, moneypo0_.money as money4_0_, moneypo0_.name as name5_0_, moneypo0_.update_at as update_a6_0_ from money moneypo0_ where moneypo0_.name=? queryByName return: [MoneyPO(id=1, name=一灰灰blog, money=100, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0)] -------- 人工拆分 ----------- Hibernate: select moneypo0_.id as id1_0_, moneypo0_.create_at as create_a2_0_, moneypo0_.is_deleted as is_delet3_0_, moneypo0_.money as money4_0_, moneypo0_.name as name5_0_, moneypo0_.update_at as update_a6_0_ from money moneypo0_ where moneypo0_.name=? and moneypo0_.money=? findByNameAndMoney return: [MoneyPO(id=1, name=一灰灰blog, money=100, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0)] -------- 人工拆分 ----------- Hibernate: select moneypo0_.id as id1_0_, moneypo0_.create_at as create_a2_0_, moneypo0_.is_deleted as is_delet3_0_, moneypo0_.money as money4_0_, moneypo0_.name as name5_0_, moneypo0_.update_at as update_a6_0_ from money moneypo0_ where moneypo0_.name=? or moneypo0_.id=? findByNameOrId return: [MoneyPO(id=1, name=一灰灰blog, money=100, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=5, name=一灰灰5, money=500, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0)]
上面的查询方式为等值查询,当在sql中除了等值查询(即=查询)之外,还有各种比较查询,不等查询以及like语句,在jpa中也比较简单,在 repository
定义的方法名,加一个like即可
/** * like查询 * * @param name * @return */ List<MoneyPO> findByNameLike(String name);
使用的时候,需要稍微注意一下,根据实际情况决定要不要加上 ‘%’
private void queryByLike() { // like 语句查询 String name = "一灰灰%"; Iterable<MoneyPO> res = moneyCurdRepository.findByNameLike(name); System.out.println("findByName like: " + res); }
输出结果为
Hibernate: select moneypo0_.id as id1_0_, moneypo0_.create_at as create_a2_0_, moneypo0_.is_deleted as is_delet3_0_, moneypo0_.money as money4_0_, moneypo0_.name as name5_0_, moneypo0_.update_at as update_a6_0_ from money moneypo0_ where moneypo0_.name like ? findByName like: [MoneyPO(id=1, name=一灰灰blog, money=100, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=2, name=一灰灰2, money=200, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=3, name=一灰灰3, money=300, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=4, name=一灰灰4, money=400, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=5, name=一灰灰5, money=500, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0)]
对于in查询, CurdRepository
提供了根据主键id的查询方式,直接调用 findAllById
即可,如果是其他的,可以通过声明一个接口的方式来支持
/** * in查询 * * @param moneys * @return */ List<MoneyPO> findByMoneyIn(List<Long> moneys);
测试case如下
// in 查询 List<Integer> ids = Arrays.asList(1, 2, 3); Iterable<MoneyPO> res = moneyCurdRepository.findAllById(ids); System.out.println("findByIds return: " + res); res = moneyCurdRepository.findByMoneyIn(Arrays.asList(400L, 300L)); System.out.println("findByMoneyIn return: " + res);
输出结果
Hibernate: select moneypo0_.id as id1_0_, moneypo0_.create_at as create_a2_0_, moneypo0_.is_deleted as is_delet3_0_, moneypo0_.money as money4_0_, moneypo0_.name as name5_0_, moneypo0_.update_at as update_a6_0_ from money moneypo0_ where moneypo0_.id in (? , ? , ?) findByIds return: [MoneyPO(id=1, name=一灰灰blog, money=100, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=2, name=一灰灰2, money=200, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=3, name=一灰灰3, money=300, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0)] ------ 手动拆分 ---------- Hibernate: select moneypo0_.id as id1_0_, moneypo0_.create_at as create_a2_0_, moneypo0_.is_deleted as is_delet3_0_, moneypo0_.money as money4_0_, moneypo0_.name as name5_0_, moneypo0_.update_at as update_a6_0_ from money moneypo0_ where moneypo0_.money in (? , ?) findByMoneyIn return: [MoneyPO(id=3, name=一灰灰3, money=300, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=4, name=一灰灰4, money=400, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=12, name=batch 一灰灰7, money=400, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=13, name=batch 一灰灰8, money=400, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0)]
数字的比较查询,比如大于等于,大于,小于,小于等于,between,下面的三个方法声明,应该能直观表示这种方式可以如何写
/** * 查询大于or等于指定id的所有记录 * * @param id * @return */ List<MoneyPO> findByIdGreaterThanEqual(Integer id); /** * 查询小于or等于指定id的所有记录 * * @param id * @return */ List<MoneyPO> findByIdLessThanEqual(Integer id); /** * between查询 * * @param low * @param high * @return */ List<MoneyPO> findByIdIsBetween(Integer low, Integer high);
下面是简单的映射关系
>
: xxGreaterThan
>=
: xxGreaterThanEqual
<
: xxLessThan
<=
: xxLessThanEqual
!=
: xxNot
between a and b
: xxIsBetween
测试case如下
private void queryByCompare() { Integer id1 = 3; Iterable<MoneyPO> res = moneyCurdRepository.findByIdLessThanEqual(id1); System.out.println("findByIdLessThan 3 return: " + res); Integer id2 = 10; res = moneyCurdRepository.findByIdGreaterThanEqual(id2); System.out.println("findByIdGreaterThan 10 return: " + res); id1 = 4; id2 = 6; res = moneyCurdRepository.findByIdIsBetween(id1, id2); System.out.println("findByIdsWBetween 3, 10 return: " + res); }
输出结果为
Hibernate: select moneypo0_.id as id1_0_, moneypo0_.create_at as create_a2_0_, moneypo0_.is_deleted as is_delet3_0_, moneypo0_.money as money4_0_, moneypo0_.name as name5_0_, moneypo0_.update_at as update_a6_0_ from money moneypo0_ where moneypo0_.id<=? findByIdLessThan 3 return: [MoneyPO(id=1, name=一灰灰blog, money=100, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=2, name=一灰灰2, money=200, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=3, name=一灰灰3, money=300, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0)] ------ 手动拆分 ---------- Hibernate: select moneypo0_.id as id1_0_, moneypo0_.create_at as create_a2_0_, moneypo0_.is_deleted as is_delet3_0_, moneypo0_.money as money4_0_, moneypo0_.name as name5_0_, moneypo0_.update_at as update_a6_0_ from money moneypo0_ where moneypo0_.id>=? findByIdGreaterThan 10 return: [MoneyPO(id=10, name=batch 一灰灰5, money=1498, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:58.0), MoneyPO(id=11, name=batch 一灰灰6, money=1498, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:58.0), MoneyPO(id=12, name=batch 一灰灰7, money=400, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=13, name=batch 一灰灰8, money=400, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0)] ------ 手动拆分 ---------- Hibernate: select moneypo0_.id as id1_0_, moneypo0_.create_at as create_a2_0_, moneypo0_.is_deleted as is_delet3_0_, moneypo0_.money as money4_0_, moneypo0_.name as name5_0_, moneypo0_.update_at as update_a6_0_ from money moneypo0_ where moneypo0_.id between ? and ? findByIdsWBetween 3, 10 return: [MoneyPO(id=4, name=一灰灰4, money=400, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=5, name=一灰灰5, money=500, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=6, name=Batch 一灰灰blog, money=100, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0)]
排序也属于基本查询的case了,jpa的实现中,通过加上 OrderByXxxAsc/Desc
的方式来决定根据什么进行升序or降序
/** * 根据money查询,并将最终的结果根据id进行倒排 * * @param money * @return */ List<MoneyPO> findByMoneyOrderByIdDesc(Long money); /** * 根据多个条件进行排序 * * @param id * @return */ List<MoneyPO> queryByIdGreaterThanEqualOrderByMoneyDescIdAsc(Integer id);
在根据多个列进行排序时,需要注意的是不能写多个 OrderBy
而是直接在 OrderBy
后面加上对应的 xxxAscyyyDesc
测试代码如
private void queryWithSort() { // 排序 Long money = 400L; Iterable<MoneyPO> res = moneyCurdRepository.findByMoneyOrderByIdDesc(money); System.out.println("findByMoneyAndOrderByIdDesc return: " + res); Integer startId = 7; res = moneyCurdRepository.queryByIdGreaterThanEqualOrderByMoneyDescIdAsc(startId); System.out.println("queryByIdGreaterThanEqualOrderByMoneyDescIdAsc return: " + res); }
输出结果如下
Hibernate: select moneypo0_.id as id1_0_, moneypo0_.create_at as create_a2_0_, moneypo0_.is_deleted as is_delet3_0_, moneypo0_.money as money4_0_, moneypo0_.name as name5_0_, moneypo0_.update_at as update_a6_0_ from money moneypo0_ where moneypo0_.money=? order by moneypo0_.id desc findByMoneyAndOrderByIdDesc return: [MoneyPO(id=13, name=batch 一灰灰8, money=400, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=12, name=batch 一灰灰7, money=400, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=4, name=一灰灰4, money=400, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0)] ------------- 人工拆分 -------- Hibernate: select moneypo0_.id as id1_0_, moneypo0_.create_at as create_a2_0_, moneypo0_.is_deleted as is_delet3_0_, moneypo0_.money as money4_0_, moneypo0_.name as name5_0_, moneypo0_.update_at as update_a6_0_ from money moneypo0_ where moneypo0_.id>=? order by moneypo0_.money desc, moneypo0_.id asc queryByIdGreaterThanEqualOrderByMoneyDescIdAsc return: [MoneyPO(id=10, name=batch 一灰灰5, money=1498, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:58.0), MoneyPO(id=11, name=batch 一灰灰6, money=1498, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:58.0), MoneyPO(id=12, name=batch 一灰灰7, money=400, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=13, name=batch 一灰灰8, money=400, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=8, name=Batch 一灰灰 3, money=200, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=9, name=Batch 一灰灰 4, money=200, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=7, name=Batch 一灰灰blog 2, money=100, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0)]
分页有两种方式,一个是查询最大的多少条数据,一个是正常的limit/offset方式,下面是一个简单的实例demo
/** * 分页查询,获取前面三个数据 * * @param id * @return */ List<MoneyPO> findTop3ByIdGreaterThan(Integer id); /** * 分页查询 * * @param id * @param pageable page 从0开始表示查询第0页,即返回size个正好>id数量的数据 * @return */ List<MoneyPO> findByIdGreaterThan(Integer id, Pageable pageable);
测试case如
private void queryWithPageSize() { // 分页查询 Iterable<MoneyPO> res = moneyCurdRepository.findTop3ByIdGreaterThan(3); System.out.println("findTop3ByIdGreaterThan 3 return: " + res); // id>3,第2页,每页3条,如果id递增时,则返回的第一条id=4 + 2 * 3 = 10 res = moneyCurdRepository.findByIdGreaterThan(3, PageRequest.of(2, 3)); System.out.println("findByIdGreaterThan 3 pageIndex 2 size 3 return: " + res); }
输出结果为
Hibernate: select moneypo0_.id as id1_0_, moneypo0_.create_at as create_a2_0_, moneypo0_.is_deleted as is_delet3_0_, moneypo0_.money as money4_0_, moneypo0_.name as name5_0_, moneypo0_.update_at as update_a6_0_ from money moneypo0_ where moneypo0_.id>? limit ? findTop3ByIdGreaterThan 3 return: [MoneyPO(id=4, name=一灰灰4, money=400, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=5, name=一灰灰5, money=500, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0), MoneyPO(id=6, name=Batch 一灰灰blog, money=100, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0)] ---------- 人工拆分 ------------ Hibernate: select moneypo0_.id as id1_0_, moneypo0_.create_at as create_a2_0_, moneypo0_.is_deleted as is_delet3_0_, moneypo0_.money as money4_0_, moneypo0_.name as name5_0_, moneypo0_.update_at as update_a6_0_ from money moneypo0_ where moneypo0_.id>? limit ?, ? findByIdGreaterThan 3 pageIndex 2 size 3 return: [MoneyPO(id=10, name=batch 一灰灰5, money=1498, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:58.0), MoneyPO(id=11, name=batch 一灰灰6, money=1498, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:58.0), MoneyPO(id=12, name=batch 一灰灰7, money=400, isDeleted=0, createAt=2019-04-18 17:01:40.0, updateAt=2019-04-18 17:01:40.0)]
主要介绍了jpa的查询的最基本使用方式,主要是根据规则定义方法名的方式来实现sql的效果, 下表示一个简单的对比小结
方法名 | 说明 | 等效sql |
---|---|---|
findByXxx |
表示根据列 Xxx 等于传参构建sql |
where xxx= ? |
findByXxxAndYyy |
根据多个列进行查询 | where xxx=? and yyy=? |
findByXxxOrYyy |
根据多个列实现or查询 | where xxx=? or yyy=? |
findByXxxLike |
like查询,需要注意查询条件中加% | where xxx like |
findByXxxIn |
in查询 | where Xxx in () |
findByXxxGreaterThan |
大于 | where xxx > ? |
findByXxxGreaterThanEqual |
大于等于 | where xxx >= ? |
findByXxxLessThan |
小于 | where xxx < ? |
findByXxxLessThanEqual |
小于等于 | where xxx <= ? |
findByXxxNot |
不等于 | where xxx != ? |
findByXxxIsBetween |
between查询 | where xxx between ? and ? |
OrderByXxxDesc |
排序 | order by xxx desc |
topN |
分页,表示获取最前面的n条 | limit n |
此外还有一个分页的方式是传参 Pageable
,来指定具体的分页
我们常见的查询操作中,除了上面的一些case之外,还有一些是我们没有提到的,如下面的一些使用姿势,则会在后面的文章中引入
group by distinct join
尽信书则不如,以上内容,纯属一家之言,因个人能力有限,难免有疏漏和错误之处,如发现bug或者有更好的建议,欢迎批评指正,不吝感激
下面一灰灰的个人博客,记录所有学习和工作中的博文,欢迎大家前去逛逛
打赏 如果觉得我的文章对您有帮助,请随意打赏。