Okhttp3 俨然已成为Android的主流网络请求开源框架,它的设计非常巧妙,而且非常灵活,功能强大.它有如下默认特性:
现在的Android项目基本上都是以OkHttp来进行高效的网络请求.当然,在使用的同时我们需要去研究它的底层实现,从而让我们写出更好的代码.
这里简单介绍2种,GET和POST.推荐让 OkHttpClient 保持单例,用同一个 OkHttpClient 实例来执行你的所有请求,因为每一个 OkHttpClient 实例都拥有自己的连接池和线程池,重用这些资源可以减少延时和节省资源,如果为每个请求创建一个 OkHttpClient实例,显然就是一种资源的浪费。
public static final String URL = "http://www.baidu.com"; private OkHttpClient mOkHttpClient = new OkHttpClient(); private final Request mRequest = new Request.Builder().url(URL).build(); @Override public void request() { mOkHttpClient.newCall(mRequest) //异步请求 .enqueue(new Callback() { @Override public void onFailure(Call call, IOException e) { e.printStackTrace(); } @Override public void onResponse(Call call, Response response) throws IOException { Log.w(TAG, "onResponse: " + response.body().string()); } }); } 复制代码
public static final String URL = "https://api.github.com/markdown/raw"; private OkHttpClient mOkHttpClient = new OkHttpClient.Builder() .build(); MediaType mMediaType = MediaType.parse("text/x-markdown; charset=utf-8"); String requestBody = "I am xfhy."; private final Request mRequest = new Request.Builder() .url(URL) .post(RequestBody.create(mMediaType, requestBody)) .build(); @Override public void request() { //每一个Call(其实现是RealCall)只能执行一次,否则会报异常 mOkHttpClient.newCall(mRequest).enqueue(new Callback() { @Override public void onFailure(Call call, IOException e) { e.printStackTrace(); } @Override public void onResponse(Call call, Response response) throws IOException { Log.w(TAG, "onResponse: " + response.body().string()); } }); } 复制代码
使用OkHttp3请求网络还是比较简单,而且异步请求也比较轻松.
正如名字所描述的,OkHttpClient像是一个请求网络的客户端.它内部有很多很多的配置信息(支持协议、任务调度器、连接池、超时时间等),通过构造器模式初始化的这些配置信息.(这里穿插一下,正如你所看到的这种一个类里面很多很多属性需要初始化的,一般就用构造器模式)
public OkHttpClient() { this(new Builder()); } public Builder() { //任务调度器 dispatcher = new Dispatcher(); //支持的协议 protocols = DEFAULT_PROTOCOLS; connectionSpecs = DEFAULT_CONNECTION_SPECS; eventListenerFactory = EventListener.factory(EventListener.NONE); proxySelector = ProxySelector.getDefault(); if (proxySelector == null) { proxySelector = new NullProxySelector(); } cookieJar = CookieJar.NO_COOKIES; socketFactory = SocketFactory.getDefault(); hostnameVerifier = OkHostnameVerifier.INSTANCE; certificatePinner = CertificatePinner.DEFAULT; proxyAuthenticator = Authenticator.NONE; authenticator = Authenticator.NONE; //连接池 connectionPool = new ConnectionPool(); dns = Dns.SYSTEM; followSslRedirects = true; followRedirects = true; retryOnConnectionFailure = true; callTimeout = 0; //超时时间 connectTimeout = 10_000; readTimeout = 10_000; writeTimeout = 10_000; pingInterval = 0; } 复制代码
其中Dispatcher有一个线程池,用于执行异步的请求.并且内部还维护了3个双向任务队列,分别是:准备异步执行的任务队列、正在异步执行的任务队列、正在同步执行的任务队列.
/** Executes calls. Created lazily. */ //这个线程池是需要的时候才会被初始化 private @Nullable ExecutorService executorService; /** Ready async calls in the order they'll be run. */ private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>(); /** Running asynchronous calls. Includes canceled calls that haven't finished yet. */ private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>(); /** Running synchronous calls. Includes canceled calls that haven't finished yet. */ private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>(); public synchronized ExecutorService executorService() { if (executorService == null) { //注意,该线程池没有核心线程,线程数量可以是Integer.MAX_VALUE个(相当于没有限制),超过60秒没干事就要被回收 executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS, new SynchronousQueue<>(), Util.threadFactory("OkHttp Dispatcher", false)); } return executorService; } 复制代码
Request感觉就是一个请求的封装.它里面封装了url、method、header、body,该有的都有了.而且它也是用构造器模式来构建的,它默认的请求方式是GET
public final class Request { final HttpUrl url; final String method; final Headers headers; final @Nullable RequestBody body; final Map<Class<?>, Object> tags; public Builder() { this.method = "GET"; this.headers = new Headers.Builder(); } public static class Builder { @Nullable HttpUrl url; String method; Headers.Builder headers; @Nullable RequestBody body; /** A mutable map of tags, or an immutable empty map if we don't have any. */ Map<Class<?>, Object> tags = Collections.emptyMap(); public Builder() { this.method = "GET"; this.headers = new Headers.Builder(); } } 复制代码
我们进入mOkHttpClient的newCall方法,它构造的是一个Call对象,实际上是一个RealCall
/** * Prepares the {@code request} to be executed at some point in the future. */ @Override public Call newCall(Request request) { return RealCall.newRealCall(this, request, false /* for web socket */); } 复制代码
所以示例中的enqueue实际上是RealCall中的方法
@Override public void enqueue(Callback responseCallback) { ...... //将AsyncCall传入任务调度器, client.dispatcher().enqueue(new AsyncCall(responseCallback)); } 复制代码
将AsyncCall(这个我们稍后再说)传入任务调度器,任务任务调度器会将其存入待执行的请求队列(上面提到的readyAsyncCalls)中,然后条件允许的话再加入到运行中的请求队列(runningAsyncCalls)中,然后将这个请求放到任务调度器中的线程池中进行消费.下面是详细代码
----Dispatcher#enqueue(AsyncCall) void enqueue(AsyncCall call) { synchronized (this) { readyAsyncCalls.add(call); // Mutate the AsyncCall so that it shares the AtomicInteger of an existing running call to // the same host. if (!call.get().forWebSocket) { AsyncCall existingCall = findExistingCallWithHost(call.host()); if (existingCall != null) call.reuseCallsPerHostFrom(existingCall); } } promoteAndExecute(); } private boolean promoteAndExecute() { List<AsyncCall> executableCalls = new ArrayList<>(); boolean isRunning; synchronized (this) { //从待执行队列中取出来 for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) { AsyncCall asyncCall = i.next(); //如果正在执行的任务>=64 那么就算了,先缓一缓 if (runningAsyncCalls.size() >= maxRequests) break; // Max capacity. if (asyncCall.callsPerHost().get() >= maxRequestsPerHost) continue; // Host max capacity. i.remove(); asyncCall.callsPerHost().incrementAndGet(); executableCalls.add(asyncCall); //加入到运行队列中 runningAsyncCalls.add(asyncCall); } isRunning = runningCallsCount() > 0; } for (int i = 0, size = executableCalls.size(); i < size; i++) { AsyncCall asyncCall = executableCalls.get(i); //一个个地开始执行 executorService方法是获取线程池 asyncCall.executeOn(executorService()); } return isRunning; } //获取线程池代码 public synchronized ExecutorService executorService() { if (executorService == null) { executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS, new SynchronousQueue<>(), Util.threadFactory("OkHttp Dispatcher", false)); } return executorService; } 复制代码
上面我们提到了很多次AsyncCall,它其实是一个RealCall的非静态内部类,所以能直接访问到RealCall的属性啥的,方便.同时,AsyncCall继承自NamedRunnable,NamedRunnable实现了NamedRunnable.
public abstract class NamedRunnable implements Runnable { protected final String name; public NamedRunnable(String format, Object... args) { this.name = Util.format(format, args); } @Override public final void run() { String oldName = Thread.currentThread().getName(); Thread.currentThread().setName(name); try { execute(); } finally { Thread.currentThread().setName(oldName); } } protected abstract void execute(); } 复制代码
NamedRunnable中使用了模板方法模式,子类必须实现execute方法,并且将逻辑放在execute中.并且NamedRunnable中还设置了自己线程的名字,实属方便管理.
上面的任务调度器中执行的AsyncCall,相当于就是执行的AsyncCall的execute的逻辑
@Override protected void execute() { boolean signalledCallback = false; transmitter.timeoutEnter(); try { //-----------------------重点代码 华丽的分割线围起来--------------------------------- //1. 通过拦截器链条,获取最终的网络请求结果 Response response = getResponseWithInterceptorChain(); //2. 标记已执行 不能再执行第二次了 signalledCallback = true; //3. 将结果回调给调用处 responseCallback.onResponse(RealCall.this, response); //-------------------------------------------------------- } catch (IOException e) { if (signalledCallback) { // Do not signal the callback twice! Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e); } else { responseCallback.onFailure(RealCall.this, e); } } finally { client.dispatcher().finished(this); } } 复制代码
开始了,开始了,重点来了,通过getResponseWithInterceptorChain方法这条拦截器链路可以获取到网络请求的结果.然后我们通过CallBack接口回调回调用处.
在开始之前,大家先看两张图,这张图是整个拦截器的流程,也是OkHttp的精华,设计之巧妙.
从上面的代码也可以看到,getResponseWithInterceptorChain方法是获取到了网络请求的最终数据的.紧接着根据我画了两张图,这两张图主要是描绘了从getResponseWithInterceptorChain进去之后发生的事,它内部会串行的执行一些特定的拦截器(interceptors),每个拦截器负责一个特殊的职责.最后那个拦截器负责请求服务器,然后服务器返回了数据再根据这个拦截器的顺序逆序返回回去,最终就得到了网络数据.
下面先简单介绍一下这些拦截器,方便后面的源码梳理
有了上面的简单介绍,我们直接进入getResponseWithInterceptorChain方法一探究竟.
Response getResponseWithInterceptorChain() throws IOException { // Build a full stack of interceptors. //用来盛放所有的拦截器的 List<Interceptor> interceptors = new ArrayList<>(); //1. 添加用户定义的拦截器 interceptors.addAll(client.interceptors()); //2. 添加一些OkHttp自带的拦截器 interceptors.add(new RetryAndFollowUpInterceptor(client)); interceptors.add(new BridgeInterceptor(client.cookieJar())); interceptors.add(new CacheInterceptor(client.internalCache())); interceptors.add(new ConnectInterceptor(client)); if (!forWebSocket) { //这里还有一个网络拦截器,也是可以用户自定义的 interceptors.addAll(client.networkInterceptors()); } //最终访问服务器的拦截器 interceptors.add(new CallServerInterceptor(forWebSocket)); //3. 将拦截器,当前拦截器索引等传入Interceptor.Chain Interceptor.Chain chain = new RealInterceptorChain(interceptors, transmitter, null, 0, originalRequest, this, client.connectTimeoutMillis(), client.readTimeoutMillis(), client.writeTimeoutMillis()); boolean calledNoMoreExchanges = false; try { //4. 请求访问下一个拦截器 Response response = chain.proceed(originalRequest); if (transmitter.isCanceled()) { closeQuietly(response); throw new IOException("Canceled"); } return response; } catch (IOException e) { calledNoMoreExchanges = true; throw transmitter.noMoreExchanges(e); } finally { if (!calledNoMoreExchanges) { transmitter.noMoreExchanges(null); } } } 复制代码
可以看到,OkHttp这个拦截器链的大体流程,最开始是用户自定义的拦截器,然后才是OkHttp自己默认的拦截器(需要注意的是,最后一个拦截器是CallServerInterceptor).然后将拦截器集合和当前拦截器的索引等数据传入RealInterceptorChain,调用RealInterceptorChain对象的proceed,并最终得到执行结果.看来逻辑在RealInterceptorChain的proceed方法内部
public final class RealInterceptorChain implements Interceptor.Chain { private final List<Interceptor> interceptors; private final Transmitter transmitter; private final @Nullable Exchange exchange; private final int index; private final Request request; private final Call call; private final int connectTimeout; private final int readTimeout; private final int writeTimeout; private int calls; public RealInterceptorChain(List<Interceptor> interceptors, Transmitter transmitter, @Nullable Exchange exchange, int index, Request request, Call call, int connectTimeout, int readTimeout, int writeTimeout) { this.interceptors = interceptors; this.transmitter = transmitter; this.exchange = exchange; this.index = index; this.request = request; this.call = call; this.connectTimeout = connectTimeout; this.readTimeout = readTimeout; this.writeTimeout = writeTimeout; } @Override public Response proceed(Request request) throws IOException { return proceed(request, transmitter, exchange); } public Response proceed(Request request, Transmitter transmitter, @Nullable Exchange exchange) throws IOException { calls++; // Call the next interceptor in the chain. //调用下一个interceptor.注意到,这里的index索引+1了的,所以是下一个interceptor RealInterceptorChain next = new RealInterceptorChain(interceptors, transmitter, exchange, index + 1, request, call, connectTimeout, readTimeout, writeTimeout); //当前interceptor Interceptor interceptor = interceptors.get(index); //调用interceptor的intercept方法 Response response = interceptor.intercept(next); return response; } } 复制代码
在proceed方法里面主要是将下一个拦截器的RealInterceptorChain构建出来,然后传入当前拦截器的intercept方法里面,方便在intercept方法里面执行下一个RealInterceptorChain的proceed方法.intercept方法返回的是获取数据之后的Response.
下面进入intercept方法内部,Interceptor其实是一个接口,然后所有的拦截器都实现了这个接口Interceptor.如果没有用户自定义的拦截器,那么第一个拦截器就是RetryAndFollowUpInterceptor
RetryAndFollowUpInterceptor#intercept
@Override public Response intercept(Chain chain) throws IOException { Request request = chain.request(); RealInterceptorChain realChain = (RealInterceptorChain) chain; Transmitter transmitter = realChain.transmitter(); int followUpCount = 0; Response priorResponse = null; //死循环 直到达到重定向的最大次数 while (true) { //准备一个流来承载request,如果存在则复用 transmitter.prepareToConnect(request); if (transmitter.isCanceled()) { throw new IOException("Canceled"); } Response response; boolean success = false; try { //调用下一个拦截器 response = realChain.proceed(request, transmitter, null); success = true; } catch (RouteException e) { //下面是一些失败,然后又重新请求的代码 // The attempt to connect via a route failed. The request will not have been sent. if (!recover(e.getLastConnectException(), transmitter, false, request)) { throw e.getFirstConnectException(); } continue; } catch (IOException e) { // An attempt to communicate with a server failed. The request may have been sent. boolean requestSendStarted = !(e instanceof ConnectionShutdownException); if (!recover(e, transmitter, requestSendStarted, request)) throw e; continue; } finally { // The network call threw an exception. Release any resources. if (!success) { transmitter.exchangeDoneDueToException(); } } // Attach the prior response if it exists. Such responses never have a body. if (priorResponse != null) { response = response.newBuilder() .priorResponse(priorResponse.newBuilder() .body(null) .build()) .build(); } Exchange exchange = Internal.instance.exchange(response); Route route = exchange != null ? exchange.connection().route() : null; Request followUp = followUpRequest(response, route); if (followUp == null) { if (exchange != null && exchange.isDuplex()) { transmitter.timeoutEarlyExit(); } return response; } RequestBody followUpBody = followUp.body(); if (followUpBody != null && followUpBody.isOneShot()) { return response; } closeQuietly(response.body()); if (transmitter.hasExchange()) { exchange.detachWithViolence(); } if (++followUpCount > MAX_FOLLOW_UPS) { throw new ProtocolException("Too many follow-up requests: " + followUpCount); } request = followUp; priorResponse = response; } } 复制代码
RetryAndFollowUpInterceptor主要是负责错误处理,以及重定向.当然重定向是有最大次数的,OkHttp规定是20次.
RetryAndFollowUpInterceptor执行proceed方法是来到了BridgeInterceptor,它是一个连接桥.添加了很多header
@Override public Response intercept(Chain chain) throws IOException { Request userRequest = chain.request(); Request.Builder requestBuilder = userRequest.newBuilder(); //进行header的包装 RequestBody body = userRequest.body(); if (body != null) { MediaType contentType = body.contentType(); if (contentType != null) { requestBuilder.header("Content-Type", contentType.toString()); } long contentLength = body.contentLength(); if (contentLength != -1) { requestBuilder.header("Content-Length", Long.toString(contentLength)); requestBuilder.removeHeader("Transfer-Encoding"); } else { requestBuilder.header("Transfer-Encoding", "chunked"); requestBuilder.removeHeader("Content-Length"); } } if (userRequest.header("Host") == null) { requestBuilder.header("Host", hostHeader(userRequest.url(), false)); } if (userRequest.header("Connection") == null) { requestBuilder.header("Connection", "Keep-Alive"); } //添加Accept-Encoding:gzip // If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing // the transfer stream. boolean transparentGzip = false; if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) { transparentGzip = true; requestBuilder.header("Accept-Encoding", "gzip"); } //创建OkhttpClient配置的cookieJar List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url()); if (!cookies.isEmpty()) { requestBuilder.header("Cookie", cookieHeader(cookies)); } if (userRequest.header("User-Agent") == null) { requestBuilder.header("User-Agent", Version.userAgent()); } //执行下一个Interceptor Response networkResponse = chain.proceed(requestBuilder.build()); HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers()); Response.Builder responseBuilder = networkResponse.newBuilder() .request(userRequest); //先判断服务器是否支持gzip压缩,支持则交给Okio处理 if (transparentGzip && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding")) && HttpHeaders.hasBody(networkResponse)) { GzipSource responseBody = new GzipSource(networkResponse.body().source()); Headers strippedHeaders = networkResponse.headers().newBuilder() .removeAll("Content-Encoding") .removeAll("Content-Length") .build(); responseBuilder.headers(strippedHeaders); String contentType = networkResponse.header("Content-Type"); responseBuilder.body(new RealResponseBody(contentType, -1L, Okio.buffer(responseBody))); } //最后将结果返回 return responseBuilder.build(); } 复制代码
BridgeInterceptor就跟它的名字那样,它是一个连接桥.它负责把用户构造的请求转换成发送给服务器的请求,就是添加了不少的header,其中还有gzip等.
BridgeInterceptor的下一个拦截器是CacheInterceptor
@Override public Response intercept(Chain chain) throws IOException { ////如果配置了缓存:优先从缓存中读取Response Response cacheCandidate = cache != null ? cache.get(chain.request()) : null; long now = System.currentTimeMillis(); //缓存策略,该策略通过某种规则来判断缓存是否有效 CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get(); Request networkRequest = strategy.networkRequest; Response cacheResponse = strategy.cacheResponse; if (cache != null) { cache.trackResponse(strategy); } if (cacheCandidate != null && cacheResponse == null) { closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it. } // If we're forbidden from using the network and the cache is insufficient, fail. //如果根据缓存策略strategy禁止使用网络,并且缓存无效,直接返回空的Response if (networkRequest == null && cacheResponse == null) { return new Response.Builder() .request(chain.request()) .protocol(Protocol.HTTP_1_1) .code(504) .message("Unsatisfiable Request (only-if-cached)") .body(Util.EMPTY_RESPONSE) .sentRequestAtMillis(-1L) .receivedResponseAtMillis(System.currentTimeMillis()) .build(); } // If we don't need the network, we're done. //如果根据缓存策略strategy禁止使用网络,且有缓存则直接使用缓存 if (networkRequest == null) { return cacheResponse.newBuilder() .cacheResponse(stripBody(cacheResponse)) .build(); } //需要网络 Response networkResponse = null; try { //执行下一个拦截器,发起网路请求 networkResponse = chain.proceed(networkRequest); } finally { // If we're crashing on I/O or otherwise, don't leak the cache body. if (networkResponse == null && cacheCandidate != null) { closeQuietly(cacheCandidate.body()); } } //本地有缓存, // If we have a cache response too, then we're doing a conditional get. if (cacheResponse != null) { //并且服务器返回304状态码(说明缓存还没过期或服务器资源没修改) if (networkResponse.code() == HTTP_NOT_MODIFIED) { //使用缓存数据 Response response = cacheResponse.newBuilder() .headers(combine(cacheResponse.headers(), networkResponse.headers())) .sentRequestAtMillis(networkResponse.sentRequestAtMillis()) .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis()) .cacheResponse(stripBody(cacheResponse)) .networkResponse(stripBody(networkResponse)) .build(); networkResponse.body().close(); // Update the cache after combining headers but before stripping the // Content-Encoding header (as performed by initContentStream()). cache.trackConditionalCacheHit(); cache.update(cacheResponse, response); return response; } else { closeQuietly(cacheResponse.body()); } } //如果网络资源已经修改:使用网络响应返回的最新数据 Response response = networkResponse.newBuilder() .cacheResponse(stripBody(cacheResponse)) .networkResponse(stripBody(networkResponse)) .build(); //将最新的数据缓存起来 if (cache != null) { if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) { // Offer this request to the cache. CacheRequest cacheRequest = cache.put(response); return cacheWritingResponse(cacheRequest, response); } if (HttpMethod.invalidatesCache(networkRequest.method())) { try { cache.remove(networkRequest); } catch (IOException ignored) { // The cache cannot be written. } } } //返回最新的数据 return response; } 复制代码
CacheInterceptor是进行一些缓存上面的处理,接下来是ConnectInterceptor
@Override public Response intercept(Chain chain) throws IOException { RealInterceptorChain realChain = (RealInterceptorChain) chain; Request request = realChain.request(); Transmitter transmitter = realChain.transmitter(); // We need the network to satisfy this request. Possibly for validating a conditional GET. //判断请求是不是GET方法, 不是的情况下,需要进行有效监测 boolean doExtensiveHealthChecks = !request.method().equals("GET"); Exchange exchange = transmitter.newExchange(chain, doExtensiveHealthChecks); //执行下一个拦截器 return realChain.proceed(request, transmitter, exchange); } 复制代码
ConnectInterceptor的下一个拦截器就是最好一个拦截器CallServerInterceptor了.
@Override public Response intercept(Chain chain) throws IOException { RealInterceptorChain realChain = (RealInterceptorChain) chain; Exchange exchange = realChain.exchange(); Request request = realChain.request(); long sentRequestMillis = System.currentTimeMillis(); //整理请求头并写入 exchange.writeRequestHeaders(request); boolean responseHeadersStarted = false; Response.Builder responseBuilder = null; if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) { // If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100 // Continue" response before transmitting the request body. If we don't get that, return // what we did get (such as a 4xx response) without ever transmitting the request body. if ("100-continue".equalsIgnoreCase(request.header("Expect"))) { exchange.flushRequest(); responseHeadersStarted = true; exchange.responseHeadersStart(); responseBuilder = exchange.readResponseHeaders(true); } if (responseBuilder == null) { if (request.body().isDuplex()) { // Prepare a duplex body so that the application can send a request body later. exchange.flushRequest(); BufferedSink bufferedRequestBody = Okio.buffer( exchange.createRequestBody(request, true)); request.body().writeTo(bufferedRequestBody); } else { // Write the request body if the "Expect: 100-continue" expectation was met. BufferedSink bufferedRequestBody = Okio.buffer( exchange.createRequestBody(request, false)); request.body().writeTo(bufferedRequestBody); bufferedRequestBody.close(); } } else { exchange.noRequestBody(); if (!exchange.connection().isMultiplexed()) { // If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection // from being reused. Otherwise we're still obligated to transmit the request body to // leave the connection in a consistent state. exchange.noNewExchangesOnConnection(); } } } else { exchange.noRequestBody(); } if (request.body() == null || !request.body().isDuplex()) { //发送最终的请求 exchange.finishRequest(); } if (!responseHeadersStarted) { exchange.responseHeadersStart(); } if (responseBuilder == null) { //响应头 responseBuilder = exchange.readResponseHeaders(false); } Response response = responseBuilder .request(request) .handshake(exchange.connection().handshake()) .sentRequestAtMillis(sentRequestMillis) .receivedResponseAtMillis(System.currentTimeMillis()) .build(); int code = response.code(); if (code == 100) { // server sent a 100-continue even though we did not request one. // try again to read the actual response response = exchange.readResponseHeaders(false) .request(request) .handshake(exchange.connection().handshake()) .sentRequestAtMillis(sentRequestMillis) .receivedResponseAtMillis(System.currentTimeMillis()) .build(); code = response.code(); } exchange.responseHeadersEnd(response); if (forWebSocket && code == 101) { // Connection is upgrading, but we need to ensure interceptors see a non-null response body. response = response.newBuilder() .body(Util.EMPTY_RESPONSE) .build(); } else { response = response.newBuilder() .body(exchange.openResponseBody(response)) .build(); } //断开连接 if ("close".equalsIgnoreCase(response.request().header("Connection")) || "close".equalsIgnoreCase(response.header("Connection"))) { exchange.noNewExchangesOnConnection(); } //抛出协议异常 if ((code == 204 || code == 205) && response.body().contentLength() > 0) { throw new ProtocolException( "HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength()); } return response; } 复制代码
这是链中最后一个拦截器,它向 服务器 发起了一次网络访问.负责向服务器发送请求数据、从服务器读取响应数据.拿到数据之后再沿着链返回.
OkHttp的拦截器链设计得非常巧妙,是典型的责任链模式.并最终由最后一个链处理了网络请求,并拿到结果.本文主要是对OkHttp主流程进行了梳理,通过本文能对OkHttp有一个整体的了解.