转载

Sharding-JDBC:单库分表的实现

剧情回顾

前面,我们一共学习了读写分离,垂直拆分,垂直拆分+读写分离。对应的文章分别如下:

Sharding-JDBC:查询量大如何优化?

Sharding-JDBC:垂直拆分怎么做?

通过上面的优化,已经能满足大部分的需求了。只有一种情况需要我们再次进行优化,那就是单表的数量急剧上升,超过了1千万以上,这个时候就要对表进行水平拆分了。

表的水平拆分是什么?

就是将一个表拆分成N个表,就像一块大石头,搬不动,然后切割成10块,这样就能搬的动了。原理是一样的。

除了能够分担数量的压力,同时也能分散读写请求的压力,当然这个得看你的分片算法了,合理的算法才能够让数据分配均匀并提升性能。

今天我们主要讲单库中进行表的拆分,也就是不分库,只分表。

既分库也分表的操作后面再讲,先来一幅图感受下未分表:

Sharding-JDBC:单库分表的实现

然后再来一张图感受下已分表:

Sharding-JDBC:单库分表的实现

从上图我们可以看出,user表由原来的一个被拆分成了4个,数据会均匀的分布在这3个表中,也就是原来的user=user0+user1+user2+user3。

分表配置

首先我们需要创建4个用户表,如下:

分表的数量你需要根据你的数据量也未来几年的增长来评估。

分表的规则配置:

  • actual-data-nodes 配置分表信息,这边用的inline表达式,翻译过来就是master.user 0,master.user 1,master.user 2,master.user 3

  • inline.sharding-column 分表的字段,这边用id分表

  • inline.algorithm-expression 分表算法行表达式,需符合groovy语法,上面的配置就是用id进行取模分片

如果我们有更复杂的分片需求,可以自定义分片算法来实现:

算法类:

在doSharding方法中你可以根据参数shardingValue做一些处理,最终返回这条数据需要分片的表名称即可。

除了单列字段分片,还支持多字段分片,大家可以自己去看文档操作一下。

需要分表的进行配置,不需要分表的无需配置,数据库操作代码一行都不用改变。

如果我们要在单库分表的基础上,再做读写分离,同样很简单,只要多配置一个从数据源就可以了,配置如下:

Sharding-JDBC:单库分表的实现

最后

你会发现,到最后这种复杂的分表场景,用框架来解决会非常简单。至少比你自己通过字段去计算路由的表,去汇总查询这种形式要好的多。

源码参考:https://github.com/yinjihuan/sharding-jdbc

觉得不错的记得关注下哦,给个Star吧!

Sharding-JDBC:单库分表的实现

Sharding-JDBC:单库分表的实现

原文  http://mp.weixin.qq.com/s?__biz=MzIwMDY0Nzk2Mw==&mid=2650320496&idx=1&sn=dcdb726f8782e63f81ef24ca2f0d3ac7
正文到此结束
Loading...