前面分析了okhtt底层请求代码,了解到请求的处理是通过拦截器链来进行的。框架总共提供了5个核心的拦截器,每个拦截器都有其特定的功能,后面将会逐个分析。除此之外我们还可以在系统拦截器之前或之后扩展自己的拦截器,,下图所示为拦截器工作链条:
用户自定义拦截器,只需实现intercept方法,并在其中调用chain的proceed方法即可。下面将按照请求顺序重点介绍框架提供的拦截器
此拦截器提供两个功能:
这两个功能是在intercept方法中得以体现的,该方法中有一个while(true)的循环。当后续的请求发生异常会调用类中的recover方法,recover中依据一定规则,如是否是fatal异常,是否配置了失败重试等来决定是否重试;当返回的响应是重定向,则会调用followUpRequest方法,生成重定向请求,再重新发起请求。无论错误恢复还是重定向实际都是通过循环来实现的。下面贴出intercept方法中的关键代码:
while (true) { try { //执行请求 response = ((RealInterceptorChain) chain).proceed(request, streamAllocation, null, null); releaseConnection = false; } catch (RouteException e) { // The attempt to connect via a route failed. The request will not have been sent. //如果能够恢复则重试,否则抛出异常 if (!recover(e.getLastConnectException(), false, request)) { throw e.getLastConnectException(); } releaseConnection = false; continue; } catch (IOException e) { // An attempt to communicate with a server failed. The request may have been sent. boolean requestSendStarted = !(e instanceof ConnectionShutdownException); //如果能够恢复则重试,否则抛出异常 if (!recover(e, requestSendStarted, request)) throw e; releaseConnection = false; continue; } finally { ...... } ...... //判断响应是否有重定向,如果有则重定向 Request followUp = followUpRequest(response); if (followUp == null) { if (!forWebSocket) { streamAllocation.release(); } return response; } ...... request = followUp; priorResponse = response; } 复制代码
此拦截器主要的主要有两个:
此拦截器中的intercept方法比较简单,就是设置一些默认的请求头或响应头等,就不单独说了,看代码便可一目了然。
@Override public Response intercept(Chain chain) throws IOException { Request userRequest = chain.request(); Request.Builder requestBuilder = userRequest.newBuilder(); RequestBody body = userRequest.body(); //设置相关请求头信息 if (body != null) { MediaType contentType = body.contentType(); if (contentType != null) { requestBuilder.header("Content-Type", contentType.toString()); } long contentLength = body.contentLength(); if (contentLength != -1) { requestBuilder.header("Content-Length", Long.toString(contentLength)); requestBuilder.removeHeader("Transfer-Encoding"); } else { requestBuilder.header("Transfer-Encoding", "chunked"); requestBuilder.removeHeader("Content-Length"); } } if (userRequest.header("Host") == null) { requestBuilder.header("Host", hostHeader(userRequest.url(), false)); } if (userRequest.header("Connection") == null) { requestBuilder.header("Connection", "Keep-Alive"); } //设置cookie boolean transparentGzip = false; if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) { transparentGzip = true; requestBuilder.header("Accept-Encoding", "gzip"); } List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url()); if (!cookies.isEmpty()) { requestBuilder.header("Cookie", cookieHeader(cookies)); } if (userRequest.header("User-Agent") == null) { requestBuilder.header("User-Agent", Version.userAgent()); } //将请求传递到下个拦截器处理 Response networkResponse = chain.proceed(requestBuilder.build()); HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers()); Response.Builder responseBuilder = networkResponse.newBuilder() .request(userRequest); //解析gzip压缩 if (transparentGzip && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding")) && HttpHeaders.hasBody(networkResponse)) { GzipSource responseBody = new GzipSource(networkResponse.body().source()); Headers strippedHeaders = networkResponse.headers().newBuilder() .removeAll("Content-Encoding") .removeAll("Content-Length") .build(); responseBuilder.headers(strippedHeaders); responseBuilder.body(new RealResponseBody(strippedHeaders, Okio.buffer(responseBody))); } return responseBuilder.build(); } 复制代码
从名字中就可以看出此拦截器是提供缓存相关功能的。okhttp底层的缓存采用的是lru算法,具体的实现类是okhttp3.internal.cache.DiskLruCache,这里就不具体展开说了。拦截器根据请求头中或响应头中的有关缓存的设置来决定缓存策略。具体的实现稍显繁琐,但理解起来并不复杂,具体参考其代码。
@Override public Response intercept(Chain chain) throws IOException { Response cacheCandidate = cache != null ? cache.get(chain.request()) : null; long now = System.currentTimeMillis(); //获取缓存策略 CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get(); Request networkRequest = strategy.networkRequest; Response cacheResponse = strategy.cacheResponse; if (cache != null) { cache.trackResponse(strategy); } if (cacheCandidate != null && cacheResponse == null) { closeQuietly(cacheCandidate.body()); // The cache candidate was not applicable. Close it. } // 如果不需要网络请求,而缓存又不存在,则返回一个504的失败响应 if (networkRequest == null && cacheResponse == null) { return new Response.Builder() .request(chain.request()) .protocol(Protocol.HTTP_1_1) .code(504) .message("Unsatisfiable Request (only-if-cached)") .body(Util.EMPTY_RESPONSE) .sentRequestAtMillis(-1L) .receivedResponseAtMillis(System.currentTimeMillis()) .build(); } // 如果不需要网络请求,返回缓存的响应 if (networkRequest == null) { return cacheResponse.newBuilder() .cacheResponse(stripBody(cacheResponse)) .build(); } //不走缓存,执行网络请求 Response networkResponse = null; try { //将请求传到到下一个拦截器进行处理 networkResponse = chain.proceed(networkRequest); } finally { // If we are crashing on I/O or otherwise, do not leak the cache body. if (networkResponse == null && cacheCandidate != null) { closeQuietly(cacheCandidate.body()); } } if (cacheResponse != null) { //如果返回的响应代码为HTTP_NOT_MODIFIED,则从缓存中提取内容返回 if (networkResponse.code() == HTTP_NOT_MODIFIED) { Response response = cacheResponse.newBuilder() .headers(combine(cacheResponse.headers(), networkResponse.headers())) .sentRequestAtMillis(networkResponse.sentRequestAtMillis()) .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis()) .cacheResponse(stripBody(cacheResponse)) .networkResponse(stripBody(networkResponse)) .build(); networkResponse.body().close(); //更新缓存相关内容 cache.trackConditionalCacheHit(); cache.update(cacheResponse, response); return response; } else { closeQuietly(cacheResponse.body()); } } Response response = networkResponse.newBuilder() .cacheResponse(stripBody(cacheResponse)) .networkResponse(stripBody(networkResponse)) .build(); if (cache != null) { //更新缓存 if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) { CacheRequest cacheRequest = cache.put(response); return cacheWritingResponse(cacheRequest, response); } if (HttpMethod.invalidatesCache(networkRequest.method())) { //缓存失效 try { cache.remove(networkRequest); } catch (IOException ignored) { // The cache cannot be written. } } } return response; } 复制代码
此拦截器负责与远程服务之间建立连接,来看看具体的代码,虽然拦截方法代码不多,但是方法的调用链却非常深:
@Override public Response intercept(Chain chain) throws IOException { RealInterceptorChain realChain = (RealInterceptorChain) chain; Request request = realChain.request(); //返回的streamAllocation对象是在RetryAndFollowUpInterceptor拦截器中创建的 //streamAllocation = new StreamAllocation(client.connectionPool(), createAddress(request.url()), callStackTrace); StreamAllocation streamAllocation = realChain.streamAllocation(); // We need the network to satisfy this request. Possibly for validating a conditional GET. boolean doExtensiveHealthChecks = !request.method().equals("GET"); //在newStream建立socket连接,返回HttpCodec对象,此对象用于对流的解析 HttpCodec httpCodec = streamAllocation.newStream(client, doExtensiveHealthChecks); RealConnection connection = streamAllocation.connection(); return realChain.proceed(request, streamAllocation, httpCodec, connection); } 复制代码
关键注释都已在代码中给出,这里就不具体解释了。网络请求可以抽象为底层的连接即:connection;在connection之上进行数据通信,可以把交换的数据抽象为流,即stream;在上层,将我们的发起的请求调用抽象为call。StreamAllocation对象就是负责协调管理这三者之间的关系。代码中还出现了一个对象:HttpCodec,此对象用于对流进行解析。streamAllocation创建了一条流就等效于与远程服务建立了一条通信链路,我们可以在这条链路上进行数据通信。深入newStram()方法:
public HttpCodec newStream(OkHttpClient client, boolean doExtensiveHealthChecks) { int connectTimeout = client.connectTimeoutMillis(); int readTimeout = client.readTimeoutMillis(); int writeTimeout = client.writeTimeoutMillis(); boolean connectionRetryEnabled = client.retryOnConnectionFailure(); try { //与远程请求地址通过socket建立连接 RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout, writeTimeout, connectionRetryEnabled, doExtensiveHealthChecks); HttpCodec resultCodec = resultConnection.newCodec(client, this); synchronized (connectionPool) { codec = resultCodec; return resultCodec; } } catch (IOException e) { throw new RouteException(e); } } 复制代码
具体的连接建立过程就是在此方法中进行的,此过程比较简单就不深入跟踪,这里给出时序图,如下图所示。总之最后还是通过socket与远程的请求建立连接。
连接建立好后,就要进行数据通信了,此拦截器的作用就是发送请求数据并从服务端获取响应数据。几行代码胜过千言万语:
@Override public Response intercept(Chain chain) throws IOException { ...... Request request = realChain.request(); //发送请求头 httpCodec.writeRequestHeaders(request); Response.Builder responseBuilder = null; if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) { ...... if (responseBuilder == null) { // Write the request body if the "Expect: 100-continue" expectation was met. //创建请求体sink,也就是将请求体写入到一个缓冲buffer中 Sink requestBodyOut = httpCodec.createRequestBody(request, request.body().contentLength()); BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut); //将请求体中的内容写入BufferedSink request.body().writeTo(bufferedRequestBody); //将内容写到远程请求端 bufferedRequestBody.close(); } ...... } //完成请求发送 httpCodec.finishRequest(); //获取响应头 if (responseBuilder == null) { responseBuilder = httpCodec.readResponseHeaders(false); } ...... int code = response.code(); if (forWebSocket && code == 101) { // Connection is upgrading, but we need to ensure interceptors see a non-null response body. response = response.newBuilder() .body(Util.EMPTY_RESPONSE) .build(); } else { //解析请求体 response = response.newBuilder() .body(httpCodec.openResponseBody(response)) .build(); } ...... return response; } 复制代码
上面的代码将数据通信的核心代码提炼了出来,可以发现通信过程为:发送请求头-->发送请求体(如果有) --> 获取响应头 --> 获取响应体。
至此我们就将okhttp中发送请求到获取响应的流程分析完了。各个拦截器各司其职,每个都有自己独立需要完成的功能,通过调用链模式组合在一起,降低了耦合性并具有很好的扩展性,此设计值得学习和借鉴。