作者简介:襄玲(花名), 阿里巴巴技术专家,PTS 研发,近期主导整理和推动云时代性能压测的思想和标准,云计算性能测试国标项目组成员,内部稳定性保障系统之预热系统负责人。
本文是《Performance Test Together》(简称PTT)系列专题分享的第6期,该专题将从性能压测的设计、实现、执行、监控、问题定位和分析、应用场景等多个纬度对性能压测的全过程进行拆解,以帮助大家构建完整的性能压测的理论体系,并提供有例可依的实战。
本文主要介绍如何正确的使用SLA来确定备容的目标,同时提高压测效率。 主要分为理论和实践两个部分。
在云计算时代,越来越多企业的服务迁移到云上,各大云服务厂商有自己服务发布的SLA,比如阿里云的ECS服务器/RDS服务/REDIS服务等,都有对应的SLA,SLA是服务提供商与客户之间定义的正式承诺。
除了云服务厂商,提供各种服务的APP/网站,如果在客户在购物时无法下单/或者在周末刷着小视频的视频打不开了,这个会严重影响用户的体验,如果故障出现的时间比较久,会流失一大批的客户,给业务带来损失。 那么,如何衡量给客户提供的服务质量呢? 进而如何衡量系统的稳定性呢? 毋庸置疑,也需要统一的语言SLA。 那么,具体什么是SLA呢?
在新系统上线,大促以及系统面临大的架构调整等各种场景中,架构组以及开发人员,需要提前为系统进行备容,对系统进行性能压测,在压测过程中,与SLA又有什么联系呢?
服务级别协议(英语: service-level agreement,缩写SLA)也称服务等级协议、服务水平协议,是服务提供商与客户之间定义的正式承诺[维基百科定义]。 SLA的概念,对互联网公司来说就是网站服务可用性的一个保证。
SLA包括两个要素,一个是SLI,一个是SLO,其中SLI定义的是测量指标; SLO定义的是服务提供的一种状态。
SLI: SLI是经过仔细定义的测量指标,它根据不同系统特点确定要测量什么,SLI的确定是一个非常复杂的过程。 SLI确定测量的具体指标,在确定具体指标的时候,需要做到该指标能否准确描述服务质量以及该指标是否可靠。
SLO: SLO(服务等级目标)指定了服务所提供功能的一种期望状态,包含所有能够描述服务应该提供什么样功能的信息。 一般描述为: 每分钟平均qps > 100k/s; 99% 访问延迟 < 500ms; 99% 每分钟带宽 > 200MB/s。
设置SLO时的几个最佳实践:
指定计算的时间窗口
使用一致的时间窗口 (XX小时滚动窗口、季度滚动窗口)
要有一个免责条款,比如: 95%的时间要能够达到SLO
SLA以面向人员的维度区分,可以划分为以下两个维度。
第一: 业务维度: 客户对这部分的指标最有体感,直接与用户的体验好坏挂钩。
例如,响应时间,错误率等。 有统计数据显示,如果响应时间大于1s,80%的用户就会流失掉; 错误率指标,是对功能正确性的保障,如果开始有业务错误,那么客户都无法直接完成期望的操作,流失也是避免不了的。 这部分的指标直接影响用户的体验。
第二: 服务侧维度: 描述的是服务端的指标,这部分指标主要是面向开发以及测试人员的,为了在发生问题的时候,可以快速定位问题。
比如,ECS/RDS等的系统指标,包括 CPU/LOAD等。
在进行性能压测设计阶段,有一个重要的环节是确定“性能压测通过标准”。 缺少了这个标准,意味着压测可能是没完没了的,谁都不知道什么时候该结束,影响性能压测效果,浪费人力财力。 所以需要通过“性能压测通过标准”中一系列量化下来的指标来确定,压测结果是否符合预期,可以停止了。 这个"标准"的来源,可能是来自业务方的期望,研发组对系统的性能期望等等,最终整理汇总下来的我们称为压测中的SLA。 这个SLA与产品对外的SLA有紧密联系,但是又存在区别。 联系就是,系统对外的SLA是压测中的SLA的重要来源,而区别就是,压测中的SLA可能会涵盖更多更细的指标,而对外的SLA并不关心这么多细节。
在压测中,看似一个简单的业务请求,实则后端是复杂的系统架构,比如统一接入层/容器层/存储层,即使容器层,也涉及到了很多不同应用/不同服务,面对纷繁复杂的架构,如何快速判断压测结果是否满足了业务需求? 如何快速判断是否达到了系统的水位不能再往上施压了呢?
作为备容的一份子(开发或者测试),可以想象一下,常态是怎样的?
一声号令,开始压测! 好了,A开发看A系统,B开发看B系统,C开发看网络层,D测试看压测结果等。 大家手忙脚乱,这个时候,有人在群里一声喊,我的系统扛不住了,停止吧(当然还有一种风险,是不是这位同学的误判呢)。 好的,这个时候压测停止。 当然这种还是比较好的情况,而有些压测场景,就只有一个测试同学,他怎么分工呢? 一会看看压测结果,一会看看A系统,一会看看B系统,忙得不亦乐乎。
这样压测能否达到效果,当然能。 但是这样的状态是最好的一种状态吗? 当然不是! 这个时候SLA就派上用场了。
首先,开发 /测试/业务同学在压测之前,对齐SLA指标,即意味着明确系统需要持续提供的服务能力,以及系统的整体水位,减少后续的沟通流程,大家都以此目标备容。
其次,配置好SLA之后,压测的负责人则只需要重点关注是否存在SLA告警,如果连续告警则说明系统已经扛不住了,直接停止压测或者由SLA直接停止压测。 对于压测的小伙伴来说,省时省力,既不会漏掉一些指标,同时也不会浪费压测时间。
想象一下,开发同学都在忙,只有“我”一个测试人员有时间全盘盯着压测。 压测起来之后,直接把不合格的业务维度数据以及系统维度数据,统统通知给“我”,“我”只是决策要不要停止压测,同时直接产出系统容量水位报告,这样是不是爽歪歪? PTS就提供了这样的功能,即设置SLA。 设置SLA需要基于采集到的各种指标,采集的指标越丰富,则SLA越丰富,越能满足不同业务的需求。
在具体使用中,首先了解PTS提供的指标,然后选取与自己业务相契合的指标并设置对应的阈值,最后进行压测。
监控指标,可以分为客户端相关指标,即业务维度指标; 另一个是服务端相关指标。
客户端监控指标,是最直观的判断系统提供的服务是否满足了业务的诉求,PTS提供了RPS/请求失败RPS/响应时间等指标。
服务端相关指标,则是从研发人员角度区分的,一方面服务端系统的表现会直接影响客户端的各个指标,是联动的。 另一方面,在客户端或者服务端出现问题的时候,可以更加方便的定位到问题。 PTS服务端指标,包含了SLB/ECS/RDS等相关组件的监控数据。
首先,客户端的SLA指标包含了 RT/RPS/成功率三个指标,分别从 响应时间/可用性以及访问负载 描述了客户端的访问是否正常,直接反映了客户的使用体感,以及提供的核心服务是否在提供可持续性可用的服务; 客户端的指标通常需要测试人员与业务方根据具体的业务具体设定。
成功率是一个衡量系统是否可用的核心指标。 同时成功率优先考虑的是业务成功率,若未设置业务成功率,则是code码等默认的成功率。
RT反映了客户访问网站的速度,一般情况下,互联网用户都不是特别有耐心。 KissMetrics 的研究 结果显示,“1 秒的网页响应延迟可能会导致转化次数减少 7%”,“47% 的消费者都希望网页能够在 2 秒内加载完毕”。
RPS则是系统能承载的最大的RPS,也即系统容量最大水位。
其次,服务端的指标,包括了SLB/ECS/RDS 三个层面的指标,每个层面的指标,由具体组件提供服务的特点决定。 例如ECS指标包括 CPU/内存利用率/LOAD ; SLB指标包括 丢弃连接数/异常后端server数; RDS指标包括 CPU/内存利用率/IOPS/连接利用率; 这部分的指标大部分情况下由开发人员确定,有个大的规则,比如CPU一般不超过80%,LOAD不超过核数的1.5倍等,具体情况具体分析。
第三,选择好指标,以及为指标设置好对应的阈值之后,就可以放心的压测了 。 在压测中,如果触发了设定的SLA则进行报警,或者直接停止压测。 同时还会有事件的汇总信息。
这样,通过前期各方对齐相应的SLA指标,并且在PTS中设置SLA,既可以对齐目标,又可以解放压测过程中的人力,很直观的看到哪些指标达到了阈值。 未设置SLA之前,大家手忙脚乱的观看各种指标数据,生怕漏掉,而加了SLA之后,就可以喝着茶把压测做完。 同时,除了通过设置SLA帮助小伙伴们更好的提高压测效率外,我们还会将SLA与智能压测相结合,大家敬请期待。
SLA无处不在,本文主要从SLA是什么,压测过程中设置SLA的意义,以及如何正确使用SLA进行了简述。 正确利用并设置SLA,让压测不再手忙脚乱。 有不同意见处请指正,谢谢!
参考阅读:
正式支持多线程!Redis 6.0与老版性能对比评测
一百人研发团队的难题:研发管理、绩效考核、组织文化和OKR
一个Netflix开发的微服务编排引擎,支持可视化工作流定义
你真的了解压测吗?实战讲述性能测试场景设计和实现
关于Golang GC的一些误解--真的比Java算法更领先吗?
技术原创及架构实践文章,欢迎通过公众号菜单「联系我们」进行投稿。转载请注明来自高可用架构「ArchNotes」微信公众号及包含以下二维码。
高可用架构
改变互联网的构建方式
长按二维码 关注「高可用架构」公众号