转载

Java8 Stream API 介绍

Java 从版本8开始支持“Stream API”,即函数式编程,可以用简单的代码表达出比较复杂的遍历操作。本文介绍这些 Stream API 的基本概念,用法,以及一些参考资料。我之前写 Python 比较多,所以一些地方可能用 Python 的视角来解释。

简单用法

public class streamApi {
 
    public static void main(String[] args) {
        List<String> myArray = 
                Arrays.asList("a1", "a2", "b1", "b2", "c1", "c2");
        myArray.stream()
                .filter(s -> s.startsWith("b"))
                .map(String::toUpperCase)
                .sorted()
                .forEach(System.out::print);
    }
}

这些函数和 Python 的 filter map sort 很像了,所以很容看懂。就是先过滤出以 "b" 开头的字符串,然后用 map 转换成大写的方式,排序之后,输出。

Stream API 中有一个概念,将这些 API 分成了两种:

  1. 中间结果(intermediate):像 filter   map   sorted  的结果都是中间结果,可以继续使用 Stream API 连续调用;
  2. 最终结果(terminal):类似 forEach  ,这种 API 将会终止 Stream 的调用,它们的结果要么是 void  ,要么是一个非 Stream 结果。

连续调用 Stream 的方式叫做 operation pipeline 。所有的 Stream API 可以参考这个 javadoc 。

大多数的 Stream 操作都接收一个 lambda 表达式作为参数,Lambda 表达式描述了 Stream 操作的一个具体行为,通常都是 stateless 和 non-interfering 的。

Non-interfering 意味着它不会修改原始的数据,比如上面的例子,没有操作去动 myList ,迭代结束之后, myList 还是保持着原来的样子。

Stateless 意味着操作都是确定的,没有依赖外面的变量(导致可能在执行期间改变)。

不同类型的 Stream 操作

Stream 可以从不同的数据类型创建,尤其是集合(Collections)。

List 和 Set 支持 stream() 方法和 parallelStream() 方法, parallenStream() 可以在多线程中执行。

在 List 上调用 stream() 可以创建一个 Stream 对象。

Arrays.asList("a1", "a2", "a3")
    .stream()
    .findFirst()
    .ifPresent(System.out::println);  // a1

但是我们不必专门为了创建 Stream 对象而创建一个集合:

Stream.of("a1", "a2", "a3")
    .findFirst()
    .ifPresent(System.out::println);  // a1

Stream.of() 可以从一些对象引用中自动创建一个 Stream。

除了从对象创建 Stream,Java8 还提供了方法从基本类型创建 Stream,比如 int long double ,这些方法分别是 IntStream LongStream DoubleStream .

IntStream 可以用来替代 for 循环:

IntStream.range(1, 4)
    .forEach(System.out::println);
 
// 1
// 2
// 3

基本类型的 Stream 和普通的 Stream 对象基本一样,几点区别如下:

  1. 基本类型使用特殊的 lambda 表达式,比如 IntFunction  之于 Function  , IntPredicate  之于 Predicate ;
  2. 基本类型支持一些特殊的“最终结果API”,比如 sum()   average()
Arrays.stream(new int[] {1, 2, 3})
    .map(n -> 2 * n + 1)
    .average()
    .ifPresent(System.out::println);  // 5.0

有时候,我们想把普通的 Stream 转换成原始类型的 Stream,比如我们想用 max() ,这时可以使用转换的方法 mapToInt() mapToLong() mapToDouble() :

Stream.of("a1", "a2", "a3")
    .map(s -> s.substring(1))
    .mapToInt(Integer::parseInt)
    .max()
    .ifPresent(System.out::println);  // 3

原始类型可以通过 mapToObject 方法,将原始类型的 Stream 转换成普通的 Stream 对象。

IntStream.range(1, 4)
    .mapToObj(i -> "a" + i)
    .forEach(System.out::println);
 
// a1
// a2
// a3

下面这个例子结合了普通的 Stream 和原始类型的 Stream:

Stream.of(1.0, 2.0, 3.0)
    .mapToInt(Double::intValue)
    .mapToObj(i -> "a" + i)
    .forEach(System.out::println);
 
// a1
// a2
// a3

执行顺序

前面介绍了 Stream 的基本概念,下面开始深入原理。

产生中间结果的 Stream 一个比较重要的特性是,它是惰性的。下面这个例子,我们只有中间结果,没有最终结果的 Stream,最终 println 不会被执行。

Stream.of("d2", "a2", "b1", "b3", "c")
    .filter(s -> {
        System.out.println("filter: " + s);
        return true;
    });

因为 Stream 操作是惰性的,只有用到的时候才会真正执行。

如果我们在后面加上一个终止类型的 Stream 操作, println 就会执行了。

Stream.of("d2", "a2", "b1", "b3", "c")
    .filter(s -> {
        System.out.println("filter: " + s);
        return true;
    })
    .forEach(s -> System.out.println("forEach: " + s));

这段代码的输出如下:

filter:  d2
forEach: d2
filter:  a2
forEach: a2
filter:  b1
forEach: b1
filter:  b3
forEach: b3
filter:  c
forEach: c

注意从输出的顺序也可以看到“惰性执行”的特征:并不是所有的 filter 都打印出来,再打印出来 forEeach 。而是一个元素执行到底,再去执行下一个元素。

这样可以减少执行的次数。参考下面这个例子:

Stream.of("d2", "a2", "b1", "b3", "c")
    .map(s -> {
        System.out.println("map: " + s);
        return s.toUpperCase();
    })
    .anyMatch(s -> {
        System.out.println("anyMatch: " + s);
        return s.startsWith("A");
    });
 
// map:      d2
// anyMatch: D2
// map:      a2
// anyMatch: A2

anyMatch 会在找到第一个符合条件的元素就返回。这样我们并不需要对有的元素执行 map ,在第一个 anyMatch 返回 true 之后,执行就结束了。所以前面的中间状态 Stream 操作,会执行尽可能少的次数。

执行的顺序很重要(Stream 的优化)

下面这个例子,我们用了两个生成中间结果的 Stream 操作 map filter ,和一个最终结果的操作 forEach

Stream.of("d2", "a2", "b1", "b3", "c")
    .map(s -> {
        System.out.println("map: " + s);
        return s.toUpperCase();
    })
    .filter(s -> {
        System.out.println("filter: " + s);
        return s.startsWith("A");
    })
    .forEach(s -> System.out.println("forEach: " + s));
 
// map:     d2
// filter:  D2
// map:     a2
// filter:  A2
// forEach: A2
// map:     b1
// filter:  B1
// map:     b3
// filter:  B3
// map:     c
// filter:  C

map filter 各执行了5次, forEach 执行了1次。

如果我们在这里稍微改变一下顺序,将 filter 提前执行,可以将 map 的执行次数减少到1次。(有点像 SQL 优化)

Stream.of("d2", "a2", "b1", "b3", "c")
    .filter(s -> {
        System.out.println("filter: " + s);
        return s.startsWith("a");
    })
    .map(s -> {
        System.out.println("map: " + s);
        return s.toUpperCase();
    })
    .forEach(s -> System.out.println("forEach: " + s));
 
// filter:  d2
// filter:  a2
// map:     a2
// forEach: A2
// filter:  b1
// filter:  b3
// filter:  c

现在 map 只执行一次了,在操作很大的集合的时候非常有用。

下面我们引入一下 sorted 这个操作:

Stream.of("d2", "a2", "b1", "b3", "c")
    .sorted((s1, s2) -> {
        System.out.printf("sort: %s; %s/n", s1, s2);
        return s1.compareTo(s2);
    })
    .filter(s -> {
        System.out.println("filter: " + s);
        return s.startsWith("a");
    })
    .map(s -> {
        System.out.println("map: " + s);
        return s.toUpperCase();
    })
    .forEach(s -> System.out.println("forEach: " + s));

排序是一个特殊的中间操作,是一个 stateful 的操作。因为需要原地排序。

输出如下:

sort:    a2; d2
sort:    b1; a2
sort:    b1; d2
sort:    b1; a2
sort:    b3; b1
sort:    b3; d2
sort:    c; b3
sort:    c; d2
filter:  a2
map:     a2
forEach: A2
filter:  b1
filter:  b3
filter:  c
filter:  d2

排序操作会在整个集合上执行。所以和之前的“垂直”执行不同,排序操作是水平执行的。注意排序影响的只是后面的 Stream 操作,对于原来的集合,顺序依然是不变的。参考这段代码:

public class streamApi {
 
    public static void main(String[] args) {
 
        List<String> foo = Arrays.asList("d2", "a2", "b1", "b3", "c");
        foo.stream().sorted(
                (s1, s2) -> {
                    return s1.compareTo(s2);
                }
        ).forEach(
                System.out::println
        );
 
        System.out.println("---");
 
        foo.stream().forEach(System.out::println);
    }
}

输出如下(注意原来的 foo 并没有变化):

a2
b1
b3
c
d2
---
d2
a2
b1
b3
c

Sort 也有惰性执行的特性,如果我们改变一下上面那个例子的执行顺序:

Stream.of("d2", "a2", "b1", "b3", "c")
    .filter(s -> {
        System.out.println("filter: " + s);
        return s.startsWith("a");
    })
    .sorted((s1, s2) -> {
        System.out.printf("sort: %s; %s/n", s1, s2);
        return s1.compareTo(s2);
    })
    .map(s -> {
        System.out.println("map: " + s);
        return s.toUpperCase();
    })
    .forEach(s -> System.out.println("forEach: " + s));
 
// filter:  d2
// filter:  a2
// filter:  b1
// filter:  b3
// filter:  c
// map:     a2
// forEach: A2

可以发现 sorted 不会执行,因为 filter 只产生了一个元素。

Stream 的重用

Java8 的 Stream 是不支持重用的。一旦调用了终止类型的 Stream 操作,Stream 会被 close。

Stream<String> stream =
    Stream.of("d2", "a2", "b1", "b3", "c")
        .filter(s -> s.startsWith("a"));
 
stream.anyMatch(s -> true);    // ok
stream.noneMatch(s -> true);   // exception

在同一个 Stream 上,先调用 noneMatch 再调用 anyMatch 会看到以下异常:

java.lang.IllegalStateException: stream has already been operated upon or closed
    at java.util.stream.AbstractPipeline.evaluate(AbstractPipeline.java:229)
    at java.util.stream.ReferencePipeline.noneMatch(ReferencePipeline.java:459)
    at com.winterbe.java8.Streams5.test7(Streams5.java:38)
    at com.winterbe.java8.Streams5.main(Streams5.java:28)

所以,我们必须为每一个终止类型的 Stream 操作创建一个新的 Stream。可以用 Stream Supplier 来实现。

Supplier<Stream<String>> streamSupplier =
    () -> Stream.of("d2", "a2", "b1", "b3", "c")
            .filter(s -> s.startsWith("a"));
 
streamSupplier.get().anyMatch(s -> true);   // ok
streamSupplier.get().noneMatch(s -> true);  // ok

每次调用 get() 都会得到一个新的 Stream。

高级操作

Stream 支持的操作很多(不像Python的函数式编程只支持4个)。我们已经见过了最常用的 filtermap 。其他的操作读者可以自行阅读 Stream 文档 。这里,我们再试一下几个复杂的操作: collect flatMap reduce .

下面的例子都会使用一个 Person 的 List 来演示。

class Person {
    String name;
    int age;
 
    Person(String name, int age) {
        this.name = name;
        this.age = age;
    }
 
    @Override
    public String toString() {
        return name;
    }
}
 
List<Person> persons =
    Arrays.asList(
        new Person("Max", 18),
        new Person("Peter", 23),
        new Person("Pamela", 23),
        new Person("David", 12));

Collect

Collect 是很有用的一个终止类型的 Stream 操作,可以将 Stream 转换成集合结果,比如 List Set Map 。Collect 接收一个 Collector 作为参数, Collector 需要支持4种操作:

  1. supplier
  2. accumulator
  3. combiner
  4. finisher

听起来实现很复杂,但是好处是 Java8 已经内置了常用的 Collector ,所以大多数情况下我们不需要自己实现。

下面看一个常用的操作:

List<Person> filtered =
    persons
        .stream()
        .filter(p -> p.name.startsWith("P"))
        .collect(Collectors.toList());
 
System.out.println(filtered);    // [Peter, Pamela]

可以看到这个 Stream 操作最后构建了一个 List,如果需要 Set 的话只需要将 toList() 换成 toSet()

接下来这个例子,将对象按照属性存放到 Map 中。

Map<Integer, List<Person>> personsByAge = persons
    .stream()
    .collect(Collectors.groupingBy(p -> p.age));
 
personsByAge
    .forEach((age, p) -> System.out.format("age %s: %s/n", age, p));
 
// age 18: [Max]
// age 23: [Peter, Pamela]
// age 12: [David]

Collectors 非常实用,还可以对 Stream 进行聚合,比如计算所有 Person 的平均年龄:

Double averageAge = persons
    .stream()
    .collect(Collectors.averagingInt(p -> p.age));
 
System.out.println(averageAge);     // 19.0

如果需要更全面的统计数据,可以试一下 summarizing Collector,这个内置的 Collector 提供了 count, sum, min, max 等有用的数据。

IntSummaryStatistics ageSummary =
    persons
        .stream()
        .collect(Collectors.summarizingInt(p -> p.age));
 
System.out.println(ageSummary);
// IntSummaryStatistics{count=4, sum=76, min=12, average=19.000000, max=23}

下面这个例子,将所有的对象 join 成一个 String:

String phrase = persons
    .stream()
    .filter(p -> p.age >= 18)
    .map(p -> p.name)
    .collect(Collectors.joining(" and ", "In Germany ", " are of legal age."));
 
System.out.println(phrase);
// In Germany Max and Peter and Pamela are of legal age.

Join Collector 的参数是一个分隔符,一个可选的前缀和后缀。

将 Stream 元素转换成 map 的时候,需要特别注意:key 必须是唯一的,否则会抛出 IllegalStateException 。但是我们可以传入一个 merge function,来指定重复的元素映射的方式:

Map<Integer, String> map = persons
    .stream()
    .collect(Collectors.toMap(
        p -> p.age,
        p -> p.name,
        (name1, name2) -> name1 + ";" + name2));
 
System.out.println(map);
// {18=Max, 23=Peter;Pamela, 12=David}

最后,来尝试一下实现自己的 Collector。前面已经提到过,实现一个 Collector,我们需要提供4个东西:supplier,accumulator,combiner,finisher.

下面这个 Collector 将所有的 Person 对象转换成一个字符串,名字全部大写,中间用 | 分割。

Collector<Person, StringJoiner, String> personNameCollector =
    Collector.of(
        () -> new StringJoiner(" | "),          // supplier
        (j, p) -> j.add(p.name.toUpperCase()),  // accumulator
        (j1, j2) -> j1.merge(j2),               // combiner
        StringJoiner::toString);                // finisher
 
String names = persons
    .stream()
    .collect(personNameCollector);
 
System.out.println(names);  // MAX | PETER | PAMELA | DAVID

Java 的 String 是不可修改的,所以这里需要一个 helper class StringJoiner ,来构建最终的 String。

|

FlatMap

前面我们演示了如何用 map 将一种类型的对象转换成另一种类型。但是 map 也有一些限制:一个对象只能转换成一个对象,如果需要将一个对象转换成多个就不行了。所以还有一个 flatMap

FlatMap 可以将 Stream 中的每一个对象转换成0个,1个或多个。无论产生多少对象,最终都会放到同一个 Stream 中,供后面的操作消费。

下面演示 flatMap 的功能,我们需要一个有继承关系的类型:

class Foo {
    String name;
    List<Bar> bars = new ArrayList<>();
 
    Foo(String name) {
        this.name = name;
    }
}
 
class Bar {
    String name;
 
    Bar(String name) {
        this.name = name;
    }
}

下面,我们使用 Stream 来初始化多个几个对象:

List<Foo> foos = new ArrayList<>();
 
// create foos
IntStream
    .range(1, 4)
    .forEach(i -> foos.add(new Foo("Foo" + i)));
 
// create bars
foos.forEach(f ->
    IntStream
        .range(1, 4)
        .forEach(i -> f.bars.add(new Bar("Bar" + i + " <- " + f.name))));

现在我们生成了一个 List,包含3个 foo,每个 foo 中包含3个 bar.

FlatMap 接收一个方法,返回一个 Stream,可以包含任意个 Objects. 所以我们可以用这个方法得到 foo 中的每一个 bar:

foos.stream()
    .flatMap(f -> f.bars.stream())
    .forEach(b -> System.out.println(b.name));
 
// Bar1 <- Foo1
// Bar2 <- Foo1
// Bar3 <- Foo1
// Bar1 <- Foo2
// Bar2 <- Foo2
// Bar3 <- Foo2
// Bar1 <- Foo3
// Bar2 <- Foo3
// Bar3 <- Foo3

上面这个代码将 foo 的 Stream 转换成了包含 9 个 bar 的 Stream。

上面所有的代码也可以简化到一个 Stream 操作中:

IntStream.range(1, 4)
    .mapToObj(i -> new Foo("Foo" + i))
    .peek(f -> IntStream.range(1, 4)
        .mapToObj(i -> new Bar("Bar" + i + " <- " f.name))
        .forEach(f.bars::add))
    .flatMap(f -> f.bars.stream())
    .forEach(b -> System.out.println(b.name));

flatMap 中也可以用 Optional 对象,Optional 是 Java8 引入的,可以检查 null 的一种机制。结合 Optional 和 flatMap 我们可以相对优雅地处理 null ,考虑下面这种数据结构:

class Outer {
    Nested nested;
}
 
class Nested {
    Inner inner;
}
 
class Inner {
    String foo;
}

为了正确地得到 Inner 中的 foo String,我们要这么写:

Outer outer = new Outer();
if (outer != null && outer.nested != null && outer.nested.inner != null) {
    System.out.println(outer.nested.inner.foo);
}

flatMap 的话,我们可以这么写:

Optional.of(new Outer())
    .flatMap(o -> Optional.ofNullable(o.nested))
    .flatMap(n -> Optional.ofNullable(n.inner))
    .flatMap(i -> Optional.ofNullable(i.foo))
    .ifPresent(System.out::println);

每一个 flatMap 都用 Optional 封装,如果不是空,就返回里面的对象,如果是空的话就返回一个 null .

Reduce

Reduce 操作可以将所有的元素编程一个结果。Java8 支持3种不同的 reduce 方法。

第一种可以将 Stream 中的元素聚合成一个。比如下面的代码,可以找到 Stream 中年龄最大的 Person.

persons
    .stream()
    .reduce((p1, p2) -> p1.age > p2.age ? p1 : p2)
    .ifPresent(System.out::println);    // Pamela

reduce 方法接收一个二元函数(一个只有两个参数的函数)作为参数,返回一个对象。(所以叫做 reduce)

第二种 reduce 接收一个初始对象,和一个二元函数。通常可以用于聚合操作(比如累加)。

Person result =
    persons
        .stream()
        .reduce(new Person("", 0), (p1, p2) -> {
            p1.age += p2.age;
            p1.name += p2.name;
            return p1;
        });
 
System.out.format("name=%s; age=%s", result.name, result.age);
// name=MaxPeterPamelaDavid; age=76

第三种 reduce 方法接收3个参数:一个初始化对象,一个二元函数,和一个 combiner 函数。

初始化值并不一定是 Stream 中的对象,所以我们可以直接用一个整数。

Integer ageSum = persons
    .stream()
    .reduce(0, (sum, p) -> sum += p.age, (sum1, sum2) -> sum1 + sum2);
 
System.out.println(ageSum);  // 76

结果依然是 76,那么原理是什么呢?我们可以打印出来执行过程:

Integer ageSum = persons
    .stream()
    .reduce(0,
        (sum, p) -> {
            System.out.format("accumulator: sum=%s; person=%s/n", sum, p);
            return sum += p.age;
        },
        (sum1, sum2) -> {
            System.out.format("combiner: sum1=%s; sum2=%s/n", sum1, sum2);
            return sum1 + sum2;
        });
 
// accumulator: sum=0; person=Max
// accumulator: sum=18; person=Peter
// accumulator: sum=41; person=Pamela
// accumulator: sum=64; person=David

可以看到 accumulator 做了所有的工作,将所有的年龄和初始化的 int 值 0 相加。但是 combiner 没有执行?

我们将 Stream 换成 parallelStream 再来看一下:

Integer ageSum = persons
    .parallelStream()
    .reduce(0,
        (sum, p) -> {
            System.out.format("accumulator: sum=%s; person=%s/n", sum, p);
            return sum += p.age;
        },
        (sum1, sum2) -> {
            System.out.format("combiner: sum1=%s; sum2=%s/n", sum1, sum2);
            return sum1 + sum2;
        });
 
// accumulator: sum=0; person=Pamela
// accumulator: sum=0; person=David
// accumulator: sum=0; person=Max
// accumulator: sum=0; person=Peter
// combiner: sum1=18; sum2=23
// combiner: sum1=23; sum2=12
// combiner: sum1=41; sum2=35

这次 combiner 执行了。并发执行的 Stream 有不同的行为。Accumulator 是并发执行的,所以需要一个 combiner 将所有的并发得到的结果再聚合起来。

下面来看一下 Parallel Stream。

Parallel Stream

因为 Stream 中每一个元素都是单独执行的,可想而知,如果并行计算每一个元素的话,可以提升性能。Parallel Stream 就是适用这种场景的。Parallel Stream 使用公共的 ForkJoinPool 来并行计算。底层的真正的线程数据取决于 CPU 的核数,默认是3.

ForkJoinPool commonPool = ForkJoinPool.commonPool();
System.out.println(commonPool.getParallelism());    // 3

这个值可以通过 JVM 参数修改:

-Djava.util.concurrent.ForkJoinPool.common.parallelism=5

Collections 可以通过 parallelStream() 来创建一个并行执行的 Stream,可以在普通的 Stream 上执行 parallel() 来转换成并行执行的 Stream。

下面这个例子,将并行执行的每一步的线程执行者打印出来:

Arrays.asList("a1", "a2", "b1", "c2", "c1")
    .parallelStream()
    .filter(s -> {
        System.out.format("filter: %s [%s]/n",
            s, Thread.currentThread().getName());
        return true;
    })
    .map(s -> {
        System.out.format("map: %s [%s]/n",
            s, Thread.currentThread().getName());
        return s.toUpperCase();
    })
    .forEach(s -> System.out.format("forEach: %s [%s]/n",
        s, Thread.currentThread().getName()));

输出如下,展示了每一步都是由哪一个线程来执行的:

filter:  b1 [main]
filter:  a2 [ForkJoinPool.commonPool-worker-1]
map:     a2 [ForkJoinPool.commonPool-worker-1]
filter:  c2 [ForkJoinPool.commonPool-worker-3]
map:     c2 [ForkJoinPool.commonPool-worker-3]
filter:  c1 [ForkJoinPool.commonPool-worker-2]
map:     c1 [ForkJoinPool.commonPool-worker-2]
forEach: C2 [ForkJoinPool.commonPool-worker-3]
forEach: A2 [ForkJoinPool.commonPool-worker-1]
map:     b1 [main]
forEach: B1 [main]
filter:  a1 [ForkJoinPool.commonPool-worker-3]
map:     a1 [ForkJoinPool.commonPool-worker-3]
forEach: A1 [ForkJoinPool.commonPool-worker-3]
forEach: C1 [ForkJoinPool.commonPool-worker-2]

从上面的结果页可以看出,所有的 ForkJoinPool 中的线程都参与了计算。

如果在上面的例子中加入一个 sort 操作,结果就有些不同了:

Arrays.asList("a1", "a2", "b1", "c2", "c1")
    .parallelStream()
    .filter(s -> {
        System.out.format("filter: %s [%s]/n",
            s, Thread.currentThread().getName());
        return true;
    })
    .map(s -> {
        System.out.format("map: %s [%s]/n",
            s, Thread.currentThread().getName());
        return s.toUpperCase();
    })
    .sorted((s1, s2) -> {
        System.out.format("sort: %s <> %s [%s]/n",
            s1, s2, Thread.currentThread().getName());
        return s1.compareTo(s2);
    })
    .forEach(s -> System.out.format("forEach: %s [%s]/n",
        s, Thread.currentThread().getName()));

结果如下:

filter:  c2 [ForkJoinPool.commonPool-worker-3]
filter:  c1 [ForkJoinPool.commonPool-worker-2]
map:     c1 [ForkJoinPool.commonPool-worker-2]
filter:  a2 [ForkJoinPool.commonPool-worker-1]
map:     a2 [ForkJoinPool.commonPool-worker-1]
filter:  b1 [main]
map:     b1 [main]
filter:  a1 [ForkJoinPool.commonPool-worker-2]
map:     a1 [ForkJoinPool.commonPool-worker-2]
map:     c2 [ForkJoinPool.commonPool-worker-3]
sort:    A2 <> A1 [main]
sort:    B1 <> A2 [main]
sort:    C2 <> B1 [main]
sort:    C1 <> C2 [main]
sort:    C1 <> B1 [main]
sort:    C1 <> C2 [main]
forEach: A1 [ForkJoinPool.commonPool-worker-1]
forEach: C2 [ForkJoinPool.commonPool-worker-3]
forEach: B1 [main]
forEach: A2 [ForkJoinPool.commonPool-worker-2]
forEach: C1 [ForkJoinPool.commonPool-worker-1]

看起来 sort 好像是顺序执行的。实际上, sort 使用的是 Java8 的 Arrays.parallelSort() 方法, 文档 里提到,这里的排序是否真正的并行执行取决于数组的长度,如果长的话就会用并行排序,否则就用单线程排序:

If the length of the specified array is less than the minimum granularity, then it is sorted using the appropriate Arrays.sort method.

回到之前的 reduce 方法,我们知道 combiner 只会在并行的时候执行,现在来看一下这个方法到底是做什么的:

List<Person> persons = Arrays.asList(
    new Person("Max", 18),
    new Person("Peter", 23),
    new Person("Pamela", 23),
    new Person("David", 12));
 
persons
    .parallelStream()
    .reduce(0,
        (sum, p) -> {
            System.out.format("accumulator: sum=%s; person=%s [%s]/n",
                sum, p, Thread.currentThread().getName());
            return sum += p.age;
        },
        (sum1, sum2) -> {
            System.out.format("combiner: sum1=%s; sum2=%s [%s]/n",
                sum1, sum2, Thread.currentThread().getName());
            return sum1 + sum2;
        });

可以看到 accumulator 和 combiner 都使用了多线程来运行:

accumulator: sum=0; person=Pamela; [main]
accumulator: sum=0; person=Max;    [ForkJoinPool.commonPool-worker-3]
accumulator: sum=0; person=David;  [ForkJoinPool.commonPool-worker-2]
accumulator: sum=0; person=Peter;  [ForkJoinPool.commonPool-worker-1]
combiner:    sum1=18; sum2=23;     [ForkJoinPool.commonPool-worker-1]
combiner:    sum1=23; sum2=12;     [ForkJoinPool.commonPool-worker-2]
combiner:    sum1=41; sum2=35;     [ForkJoinPool.commonPool-worker-2]

综上,在数据量很大的时候,并行执行的 Stream 可以带来很大的性能提升。但是注意像 reducecollect 这样的操作,需要特殊的 combiner。(因为前一操作产生的类型不同,需要做聚合,所以无法和迁移操作的函数一样,需要另外提供)。

另外要注意的是,Parallel Stream 底层使用的通用的 ForkJoinPool ,所以需要注意不要在并行的 Stream 中出现很慢或阻塞的操作,这样会影响其他并行任务。

以上就是基本的 Stream API 介绍了,强烈建议阅读 Java8 的官方文档。

参考资料:

  1. package summary
  2. Document
  3. Toturial
  4. Java 8 Stream Tutorial
  5. Collection Pipeline  by Martin Fowler
  6. Stream.js Javascript 版的 Java Stream API
原文  https://www.kawabangga.com/posts/3698
正文到此结束
Loading...