转载

Java 面试:动态规划与组合数

最近在刷力扣上的题目,刷到了65不同路径,当初上大学的时候,曾在hihocoder上刷到过这道题目,但是现在已经几乎全忘光了,大概的知识点是动态规划,如今就让我们一起来回顾一下。

从题目说起

题目原文是:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?

Java 面试:动态规划与组合数

例如,上图是一个7 x 3 的网格。有多少可能的路径?

说明:m 和 n 的值均不超过 100。

示例 1:

输入: m = 3, n = 2

输出: 3

解释:

从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向右 -> 向下

  2. 向右 -> 向下 -> 向右

  3. 向下 -> 向右 -> 向右

示例 2:

输入: m = 7, n = 3

输出: 28

正向思路

我们先按照正常思路来想一下,当你处于起点时,你有两个选择,向右或者向下,除非你处于最下面一排或者最右边一列,那你只有一种选择(比如处于最下面一排,你只能往右),其他位置,你都有两种选择。

因此,我们就根据这个思路,可以写出代码:

class Solution {
    public int uniquePaths(int m, int n) {
        // 特殊情况:起点即终点
        if (m == 1 && n == 1) {
            return 1;
        }
        // 当前处于(1,1),终点为(m,n)
        return walk(1, 1, m, n);
    }

    public int walk(int x, int y, int m, int n){
        // 已经处于终点
        if (x >= m && y >= n) {
            return 0;
        }
        // 处于最下面一排或者最右边一列
        if (x >= m || y >= n) {
            return 1;
        }
        // 往下走,有多少种走法
        int down = walk(x, y + 1, m, n);
        // 往右走,有多少种走法
        int right = walk(x + 1, y, m, n);
        // 从当前(x,y)出发,走到(m,n),共有多少种走法
        return down + right;
    }
}

优化

我们考虑一下,这种写法,有没有可以优化的地方。

你们应该一眼就发现, walk 方法的第一个判断 if (x >= m && y >= n) ,永远都不可能为 true ,因为下一个判断 if (x >= m || y >= n) 就已经是临界点情况,直接就已经有返回值,根本不可能达到 x >= m && y >= n 的情况。因此,该判断可以删除。

假设我们从(1,1)的位置出发,终点是(3,3),那么到达(2,2)这个中间点的话有几种走法呢?两种,先到(1,2)再到(2,2),或者,先到(2,1)再到(2,2)。

因此,如果根据我们上面的写法,从(2,2)到终点(3,3),我们会算两次,虽然这样的思路本身是正确,但这样的情况应该是可以优化的。因为从(1,1)到(3,3),一共只有6种路径,但已经有2条是重复的路径了,那么随着 mn 越来越大,中间点会越来越多,那么重复的路径也会越来越多。

这就是 前面的选择 对于 后面的选择 会有影响,即使 后面的选择 相同,但由于 前面的选择 不同,从而也被认为是不同的选择。

很明显, 后面的选择 更加唯一,如果我们先在后面做出选择,那么就可以减少重复计算的次数。因此,我们可以试试反向思路。

反向思路

如果我们不是从起点出发,而是从终点倒退到起点开始算的话。假设终点是(3,3),它只能由(2,3)和(3,2)直接到达,(2,3)也只能由(2,2)和(1,3)直接到达,(1,3)只能由(1,2)直接到达,(1,2)只能由(1,1)直接到达,因此(1,3)只能由(1,1)直达。

我们可以得出规律:除了最左边一列和最上面一排的点,只能由起点(1,1)直达以外,其他的点(x,y)都是由(x-1,y)和(x,y-1)两个点直接到达的。

因此,根据这个思路,我们可以写出代码:

class Solution {
    public int uniquePaths(int m, int n) {
        int[][] result = new int[m][n];
        int j;
        for (int i = 0; i < m; i++) {
            for (j = 0; j < n; j++) {
                if (i == 0 || j == 0) {
                    // 最上面一排的点和最左边一列的点,只能由(1,1)到达
                    result[i][j] = 1;
                } else {
                    // 其他的点都可以由左边的点和上面的点到达
                    result[i][j] = result[i - 1][j] + result[i][j - 1];
                }
            }
        }

        return result[m - 1][n - 1];
    }
}

其实这样的想法就已经是 动态规划 的范畴了,我们看看维基上的定义

动态规划(英语:Dynamic programming,简称DP)是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。

一开始我感觉很像 分治法 ,因为都需要将一个大问题分解为子问题,但 分治法 最终会将子问题合并,但 动态规划 却不用。

优化

我们考虑一下,这种写法,有没有可以优化的地方。

首先是空间上的优化,我们一定要用二维数组吗?可以用一维数组代替吗?

答案是肯定的,因为每个点的计算只和左边与上边相邻的点有关,因此,不需要更加久远的点。

一维数组

假如只用一维数组,那么只需要存储上一排的结果,如果计算到下一排的时候,则依次替换,代码为:

class Solution {
    public int uniquePaths(int m, int n) {
        int[] dp = new int[m];
        int j;
        for(int i = 0; i < n; i++) {
            for(j = 0; j < m; j++) {
                if(j == 0) {
                    dp[j] = 1;
                }
                else {
                    // 其他的点都可以由左边的点和上面的点到达
                    dp[j] += dp[j-1];
                }
            }
        }

        return dp[m-1];
    }
}

这样的优化,差不多就结束了。那我们是否可以从思路上进行优化呢?

组合数

因为我们只有向右或向下两种选择,而我们一共要走的路径其实是 (m-n-2) ,其中有 (m-1) 的路径是向右, (n-1) 的路径是向下,其实可以转变为:

(m-n-2) 中挑出 (m-1) ,即组合数 C((m-n-2), (m-1)) 的值

那么我们可以写出代码:

class Solution {

    public int uniquePaths(int m, int n) {
        // 用double,因为计算出的数值会很大
        double num = 1, denom = 1;
        // 找出更小的数,这样可以减少计算次数和计算出的数值
        int small = m > n ? n : m;

        for (int i = 1; i <= small - 1; ++i) {
            num *= m + n - 1 - i;
            denom *= i;
         }

         return (int)(num / denom);
    }
}

##总结

以上就是我做这道题的一些思路和想法了,虽然题目本身不难,但可以讨论的点还是很多的,如果大家有什么疑问,欢迎在下方留言。

原文  https://mp.weixin.qq.com/s/USegx6A3jENesw5wi5RfUA
正文到此结束
Loading...