《Java集合详解系列》是我在完成夯实Java基础篇的系列博客后准备开始写的新系列。
这些文章将整理到我在GitHub上的《Java面试指南》仓库,更多精彩内容请到我的仓库里查看
https://github.com/h2pl/Java-...
喜欢的话麻烦点下Star、fork哈
文章首发于我的个人博客:
www.how2playlife.com
首先,什么是红黑树呢? 红黑树是一种“平衡的”二叉查找树,它是一种经典高效的算法,能够保证在最坏的情况下动态集合操作的时间为O(lgn)。红黑树每个节点包含5个域,分别为color,key,left,right和p。 color是在每个节点上增加的一个存储位表示节点的颜色,可以是RED或者BLACK。key为结点中的value值,left,right为该结点的左右孩子指针,没有的话为NIL,p是一个指针,是指向该节的父节点。如下图(来自维基百科)表示就是一颗红黑树,NIL为指向外结点的指针。(外结点视为没有key的结点)
红黑树有什么性质呢?一般称为红黑性质,有以下五点:
1)每个结点或者是红的或者是黑的;
2)根结点是黑的;
3)每个叶结点(NIL)是黑的;
4)如果一个结点是红的,则它的两个孩子都是黑的;
5)对每个结点,从该结点到其他其子孙结点的所有路径上包含相同数目的黑结点。
为了后面的分析,我们还得知道以下知识点。
(1)黑高度:从某个结点x出发(不包括该结点)到达一个叶结点的任意一条路径上,黑色结点的个数称为该结点x的黑高度。
(2)一颗有n个内结点的红黑树的高度至多为2lg(n+1)。 (内结点视为红黑树中带关键字的结点)
(3)包含n个内部节点的红黑树的高度是 O(log(n))。
红黑树是特殊的二叉查找树,又名R-B树(RED-BLACK-TREE),由于红黑树是特殊的二叉查找树,即红黑树具有了二叉查找树的特性,而且红黑树还具有以下特性:
有几点需要注意的是:
1.特性3中指定红黑树的每个叶子节点都是空节点,但是在Java实现中红黑树将使用null代表空节点,因此遍历红黑树时看不到黑色的叶子节点,反而见到的叶子节点是红色的
2.特性4保证了从根节点到叶子节点的最长路径的长度不会超过任何其他路径的两倍,例如黑色高度为3的红黑树,其最短路径(路径指的是根节点到叶子节点)是2(黑节点-黑节点-黑节点),其最长路径为4(黑节点-红节点-黑节点-红节点-黑节点)。
首先红黑树在插入节点的时,我们设定插入节点的颜色为 红色 ,如果插入的是黑色节点,必然会违背特性5,即改变了红黑树的黑高度,如下插入红色结点又存在着几种情况:
如图所示,这种情况不会破坏红黑树的特性,即不需要任何处理
当其父亲为红色时又会存在以下的情况
红叔的情况,其实相对来说比较简单的,如下图所示,只需要通过修改父、叔的颜色为黑色,祖的颜色为红色,而且回去递归的检查祖节点即可
黑叔的情况有如下几种,这几种情况下是不能够通过修改颜色达到平衡的效果,因此会通过旋转的操作,红黑树种有两种旋转操作,左旋和右旋(现在存在的疑问,什么时候使用到左旋,什么时候使用到右旋)
以上就是红黑树新增节点所有可能的操作,下面会介绍红黑树中的删除操作
删除操作相比于插入操作情况更加复杂,删除一个节点可以大致分为三种情况:
在讲述修复操作之前,首先需要明白几点,
1.对于红黑树而言,单支节点的情况只有如下图所示的一种情况,即为当前节点为黑色,其孩子节点为红色,(1.假设当前节点为红色,其两个孩子节点必须为黑色,2.若有孙子节点,则必为黑色,导致黑子数量不等,而红黑树不平衡)
2.由于红黑树是特殊的二叉查找树,它的删除和二叉查找树类型,真正的删除点即为删除点A的中序遍历的后继(前继也可以),通过红黑树的特性可知这个后继必然最多只能有一个孩子,其这个孩子节点必然是右孩子节点,从而为单支情况(即这个后继节点只能有一个红色孩子或没有孩子)
下面将详细介绍,在执行删除节点操作之后,将通过修复操作使得红黑树达到平衡的情况。
Case 3:被删除的节点是黑色,其子节点也是黑色,将其子节点顶替上来,变成了双黑的问题,此时有以下情况
从图中可以看出,操作之后红黑树并未达到平衡状态,而是变成的 黑兄 的情况
Case 2:新节点的兄弟节点为 黑色 ,此时可能有如下情况
情况一:新节点在右子树,红侄在兄弟节点左子树,此时的操作为右旋,并将兄弟节点变为父亲的颜色,父亲节点变为黑色,侄节点变为黑色,如下图所示
情况二:新节点在右子树,红侄在兄弟节点右子树,此时的操作为先左旋,后右旋并将侄节点变为父亲的颜色,父节点变为黑色,如下图所示
情况三:新节点在左子树,红侄在兄弟节点左子树,此时的操作为先右旋在左旋并将侄节点变为父亲的颜色,父亲节点变为黑色,如下图所示
情况四:新节点在右子树,红侄在兄弟节点右子树,此时的操作为左旋,并将兄弟节点变为父节点的颜色,父亲节点变为黑色,侄节点变为黑色,如下图所示
如下是使用JAVA代码实现红黑树的过程,主要包括了插入、删除、左旋、右旋、遍历等操作
/* 插入一个节点 * @param node */ private void insert(RBTreeNode<T> node){ int cmp; RBTreeNode<T> root = this.rootNode; RBTreeNode<T> parent = null; //定位节点添加到哪个父节点下 while(null != root){ parent = root; cmp = node.key.compareTo(root.key); if (cmp < 0){ root = root.left; } else { root = root.right; } } node.parent = parent; //表示当前没一个节点,那么就当新增的节点为根节点 if (null == parent){ this.rootNode = node; } else { //找出在当前父节点下新增节点的位置 cmp = node.key.compareTo(parent.key); if (cmp < 0){ parent.left = node; } else { parent.right = node; } } //设置插入节点的颜色为红色 node.color = COLOR_RED; //修正为红黑树 insertFixUp(node); } /** * 红黑树插入修正 * @param node */ private void insertFixUp(RBTreeNode<T> node){ RBTreeNode<T> parent,gparent; //节点的父节点存在并且为红色 while( ((parent = getParent(node)) != null) && isRed(parent)){ gparent = getParent(parent); //如果其祖父节点是空怎么处理 // 若父节点是祖父节点的左孩子 if(parent == gparent.left){ RBTreeNode<T> uncle = gparent.right; if ((null != uncle) && isRed(uncle)){ setColorBlack(uncle); setColorBlack(parent); setColorRed(gparent); node = gparent; continue; } if (parent.right == node){ RBTreeNode<T> tmp; leftRotate(parent); tmp = parent; parent = node; node = tmp; } setColorBlack(parent); setColorRed(gparent); rightRotate(gparent); } else { RBTreeNode<T> uncle = gparent.left; if ((null != uncle) && isRed(uncle)){ setColorBlack(uncle); setColorBlack(parent); setColorRed(gparent); node = gparent; continue; } if (parent.left == node){ RBTreeNode<T> tmp; rightRotate(parent); tmp = parent; parent = node; node = tmp; } setColorBlack(parent); setColorRed(gparent); leftRotate(gparent); } } setColorBlack(this.rootNode); }
插入节点的操作主要分为以下几步:
如下为删除节点的代码
private void remove(RBTreeNode<T> node){ RBTreeNode<T> child,parent; boolean color; //被删除节点左右孩子都不为空的情况 if ((null != node.left) && (null != node.right)){ //获取到被删除节点的后继节点 RBTreeNode<T> replace = node; replace = replace.right; while(null != replace.left){ replace = replace.left; } //node节点不是根节点 if (null != getParent(node)){ //node是左节点 if (getParent(node).left == node){ getParent(node).left = replace; } else { getParent(node).right = replace; } } else { this.rootNode = replace; } child = replace.right; parent = getParent(replace); color = getColor(replace); if (parent == node){ parent = replace; } else { if (null != child){ setParent(child,parent); } parent.left = child; replace.right = node.right; setParent(node.right, replace); } replace.parent = node.parent; replace.color = node.color; replace.left = node.left; node.left.parent = replace; if (color == COLOR_BLACK){ removeFixUp(child,parent); } node = null; return; } if (null != node.left){ child = node.left; } else { child = node.right; } parent = node.parent; color = node.color; if (null != child){ child.parent = parent; } if (null != parent){ if (parent.left == node){ parent.left = child; } else { parent.right = child; } } else { this.rootNode = child; } if (color == COLOR_BLACK){ removeFixUp(child, parent); } node = null; }
/** * 删除修复 * @param node * @param parent */ private void removeFixUp(RBTreeNode<T> node, RBTreeNode<T> parent){ RBTreeNode<T> other; //node不为空且为黑色,并且不为根节点 while ((null == node || isBlack(node)) && (node != this.rootNode) ){ //node是父节点的左孩子 if (node == parent.left){ //获取到其右孩子 other = parent.right; //node节点的兄弟节点是红色 if (isRed(other)){ setColorBlack(other); setColorRed(parent); leftRotate(parent); other = parent.right; } //node节点的兄弟节点是黑色,且兄弟节点的两个孩子节点也是黑色 if ((other.left == null || isBlack(other.left)) && (other.right == null || isBlack(other.right))){ setColorRed(other); node = parent; parent = getParent(node); } else { //node节点的兄弟节点是黑色,且兄弟节点的右孩子是红色 if (null == other.right || isBlack(other.right)){ setColorBlack(other.left); setColorRed(other); rightRotate(other); other = parent.right; } //node节点的兄弟节点是黑色,且兄弟节点的右孩子是红色,左孩子是任意颜色 setColor(other, getColor(parent)); setColorBlack(parent); setColorBlack(other.right); leftRotate(parent); node = this.rootNode; break; } } else { other = parent.left; if (isRed(other)){ setColorBlack(other); setColorRed(parent); rightRotate(parent); other = parent.left; } if ((null == other.left || isBlack(other.left)) && (null == other.right || isBlack(other.right))){ setColorRed(other); node = parent; parent = getParent(node); } else { if (null == other.left || isBlack(other.left)){ setColorBlack(other.right); setColorRed(other); leftRotate(other); other = parent.left; } setColor(other,getColor(parent)); setColorBlack(parent); setColorBlack(other.left); rightRotate(parent); node = this.rootNode; break; } } } if (node!=null) setColorBlack(node); }
删除节点主要分为几种情况去做对应的处理:
1.删除节点,按照如下三种情况去删除节点
以上主要介绍了红黑树的一些特性,包括一些操作详细的解析了里面的过程,写的时间比较长,感觉确实比较难理清楚。后面会持续的理解更深入,若有存在问题的地方,请指正。
红黑树(五)之 Java的实现
通过分析 JDK 源代码研究 TreeMap 红黑树算法实现
红黑树
(图解)红黑树的插入和删除
红黑树深入剖析及Java实现
如果大家想要实时关注我更新的文章以及分享的干货的话,可以关注我的公众号【Java技术江湖】一位阿里 Java 工程师的技术小站,作者黄小斜,专注 Java 相关技术:SSM、SpringBoot、MySQL、分布式、中间件、集群、Linux、网络、多线程,偶尔讲点Docker、ELK,同时也分享技术干货和学习经验,致力于Java全栈开发!
Java工程师必备学习资源:一些Java工程师常用学习资源,关注公众号后,后台回复关键字 “Java” 即可免费无套路获取。
黄小斜是跨考软件工程的 985 硕士,自学 Java 两年,拿到了 BAT 等近十家大厂 offer,从技术小白成长为阿里工程师。
作者专注于 JAVA 后端技术栈,热衷于分享程序员干货、学习经验、求职心得和程序人生,目前黄小斜的CSDN博客有百万+访问量,知乎粉丝2W+,全网已有10W+读者。
黄小斜是一个斜杠青年,坚持学习和写作,相信终身学习的力量,希望和更多的程序员交朋友,一起进步和成长!关注公众号【黄小斜】后回复【原创电子书】即可领取我原创的电子书《菜鸟程序员修炼手册:从技术小白到阿里巴巴Java工程师》
程序员3T技术学习资源:一些程序员学习技术的资源大礼包,关注公众号后,后台回复关键字 “资料” 即可免费无套路获取。
本文由博客一文多发平台 OpenWrite 发布!