Hbase的客户端有原生java客户端,Hbase Shell,Thrift,Rest,Mapreduce,WebUI等等。
下面是这几种客户端的常见用法。
原生java客户端是hbase最主要,最高效的客户端。
涵盖了增删改查等API,还实现了创建,删除,修改表等DDL操作。
Java连接HBase需要两个类:
HBaseConfiguration
ConnectionFactory
首先,配置一个hbase连接:
比如zookeeper的地址端口 hbase.zookeeper.quorum hbase.zookeeper.property.clientPort
更通用的做法是编写hbase-site.xml文件,实现配置文件的加载:
hbase-site.xml示例:
<configuration> <property> <name>hbase.master</name> <value>hdfs://host1:60000</value> </property> <property> <name>hbase.zookeeper.quorum</name> <value>host1,host2,host3</value> </property> <property> <name>hbase.zookeeper.property.clientPort</name> <value>2181</value> </property> </configuration>
随后我们加载配置文件,创建连接:
config.addResource(new Path(System.getenv("HBASE_CONF_DIR"), "hbase-site.xml")); Connection connection = ConnectionFactory.createConnection(config);
要创建表我们需要首先创建一个 Admin
对象
Admin admin = connection.getAdmin(); //使用连接对象获取Admin对象 TableName tableName = TableName.valueOf("test");//定义表名 HTableDescriptor htd = new HTableDescriptor(tableName);//定义表对象 HColumnDescriptor hcd = new HColumnDescriptor("data");//定义列族对象 htd.addFamily(hcd); //添加 admin.createTable(htd);//创建表
HBase2.X 的版本中创建表使用了新的 API
TableName tableName = TableName.valueOf("test");//定义表名 //TableDescriptor对象通过TableDescriptorBuilder构建; TableDescriptorBuilder tableDescriptor = TableDescriptorBuilder.newBuilder(tableName); ColumnFamilyDescriptor family = ColumnFamilyDescriptorBuilder.newBuilder(Bytes.toBytes("data")).build();//构建列族对象 tableDescriptor.setColumnFamily(family);//设置列族 admin.createTable(tableDescriptor.build());//创建表
Table table = connection.getTable(tableName);//获取Table对象 try { byte[] row = Bytes.toBytes("row1"); //定义行 Put put = new Put(row); //创建Put对象 byte[] columnFamily = Bytes.toBytes("data"); //列 byte[] qualifier = Bytes.toBytes(String.valueOf(1)); //列族修饰词 byte[] value = Bytes.toBytes("张三丰"); //值 put.addColumn(columnFamily, qualifier, value); table.put(put); //向表中添加数据 } finally { //使用完了要释放资源 table.close(); }
//获取数据 Get get = new Get(Bytes.toBytes("row1")); //定义get对象 Result result = table.get(get); //通过table对象获取数据 System.out.println("Result: " + result); //很多时候我们只需要获取“值” 这里表示获取 data:1 列族的值 byte[] valueBytes = result.getValue(Bytes.toBytes("data"), Bytes.toBytes("1")); //获取到的是字节数组 //将字节转成字符串 String valueStr = new String(valueBytes,"utf-8"); System.out.println("value:" + valueStr);
Scan scan = new Scan(); ResultScanner scanner = table.getScanner(scan); try { for (Result scannerResult: scanner) { System.out.println("Scan: " + scannerResult); byte[] row = scannerResult.getRow(); System.out.println("rowName:" + new String(row,"utf-8")); } } finally { scanner.close(); }
TableName tableName = TableName.valueOf("test"); admin.disableTable(tableName); //禁用表 admin.deleteTable(tableName); //删除表
Hbase Java API表DDL完整示例:
package com.example.hbase.admin; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.HColumnDescriptor; import org.apache.hadoop.hbase.HConstants; import org.apache.hadoop.hbase.HTableDescriptor; import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.client.Admin; import org.apache.hadoop.hbase.client.Connection; import org.apache.hadoop.hbase.client.ConnectionFactory; import org.apache.hadoop.hbase.io.compress.Compression.Algorithm; public class Example { private static final String TABLE_NAME = "MY_TABLE_NAME_TOO"; private static final String CF_DEFAULT = "DEFAULT_COLUMN_FAMILY"; public static void createOrOverwrite(Admin admin, HTableDescriptor table) throws IOException { if (admin.tableExists(table.getTableName())) { admin.disableTable(table.getTableName()); admin.deleteTable(table.getTableName()); } admin.createTable(table); } public static void createSchemaTables(Configuration config) throws IOException { try (Connection connection = ConnectionFactory.createConnection(config); Admin admin = connection.getAdmin()) { HTableDescriptor table = new HTableDescriptor(TableName.valueOf(TABLE_NAME)); table.addFamily(new HColumnDescriptor(CF_DEFAULT).setCompressionType(Algorithm.NONE)); System.out.print("Creating table. "); createOrOverwrite(admin, table); System.out.println(" Done."); } } public static void modifySchema (Configuration config) throws IOException { try (Connection connection = ConnectionFactory.createConnection(config); Admin admin = connection.getAdmin()) { TableName tableName = TableName.valueOf(TABLE_NAME); if (!admin.tableExists(tableName)) { System.out.println("Table does not exist."); System.exit(-1); } HTableDescriptor table = admin.getTableDescriptor(tableName); // 更新表格 HColumnDescriptor newColumn = new HColumnDescriptor("NEWCF"); newColumn.setCompactionCompressionType(Algorithm.GZ); newColumn.setMaxVersions(HConstants.ALL_VERSIONS); admin.addColumn(tableName, newColumn); // 更新列族 HColumnDescriptor existingColumn = new HColumnDescriptor(CF_DEFAULT); existingColumn.setCompactionCompressionType(Algorithm.GZ); existingColumn.setMaxVersions(HConstants.ALL_VERSIONS); table.modifyFamily(existingColumn); admin.modifyTable(tableName, table); // 禁用表格 admin.disableTable(tableName); // 删除列族 admin.deleteColumn(tableName, CF_DEFAULT.getBytes("UTF-8")); // 删除表格(需提前禁用) admin.deleteTable(tableName); } } public static void main(String... args) throws IOException { Configuration config = HBaseConfiguration.create(); //添加必要配置文件(hbase-site.xml, core-site.xml) config.addResource(new Path(System.getenv("HBASE_CONF_DIR"), "hbase-site.xml")); config.addResource(new Path(System.getenv("HADOOP_CONF_DIR"), "core-site.xml")); createSchemaTables(config); modifySchema(config); } }
在 HBase 安装目录 bin/ 目录下使用 hbase shell
命令连接正在运行的 HBase 实例。
$ ./bin/hbase shell hbase(main):001:0>
输入 help
并回车, 可以看到 HBase Shell 的基本信息和一些示例命令.
使用 create
创建一个表 必须指定一个表名和列族名
hbase(main):001:0> create 'test', 'cf' 0 row(s) in 0.4170 seconds => Hbase::Table - test
使用 list
查看存在表
hbase(main):002:0> list 'test' TABLE test 1 row(s) in 0.0180 seconds => ["test"]
使用 describe
查看表细节及配置
hbase(main):003:0> describe 'test' Table test is ENABLED test COLUMN FAMILIES DESCRIPTION {NAME => 'cf', VERSIONS => '1', EVICT_BLOCKS_ON_CLOSE => 'false', NEW_VERSION_BEHAVIOR => 'false', KEEP_DELETED_CELLS => 'FALSE', CACHE_DATA_ON_WRITE => 'false', DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', REPLICATION_SCOPE => '0', BLOOMFILTER => 'ROW', CACHE_INDEX_ON_WRITE => 'f alse', IN_MEMORY => 'false', CACHE_BLOOMS_ON_WRITE => 'false', PREFETCH_BLOCKS_ON_OPEN => 'false', COMPRESSION => 'NONE', BLOCKCACHE => 'true', BLOCKSIZE => '65536'} 1 row(s) Took 0.9998 seconds
使用 put
插入数据
hbase(main):003:0> put 'test', 'row1', 'cf:a', 'value1' 0 row(s) in 0.0850 seconds hbase(main):004:0> put 'test', 'row2', 'cf:b', 'value2' 0 row(s) in 0.0110 seconds hbase(main):005:0> put 'test', 'row3', 'cf:c', 'value3' 0 row(s) in 0.0100 seconds
从 HBase 获取数据的途径之一就是 scan
。使用 scan 命令扫描表数据。你可以对扫描做限制。
hbase(main):006:0> scan 'test' ROW COLUMN+CELL row1 column=cf:a, timestamp=1421762485768, value=value1 row2 column=cf:b, timestamp=1421762491785, value=value2 row3 column=cf:c, timestamp=1421762496210, value=value3 3 row(s) in 0.0230 seconds
使用 get
命令一次获取一条数据
hbase(main):007:0> get 'test', 'row1' COLUMN CELL cf:a timestamp=1421762485768, value=value1 1 row(s) in 0.0350 seconds
使用 disable
命令禁用表
hbase(main):008:0> disable 'test' 0 row(s) in 1.1820 seconds hbase(main):009:0> enable 'test' 0 row(s) in 0.1770 seconds
使用 enable
命令启用表
hbase(main):010:0> disable 'test' 0 row(s) in 1.1820 seconds
hbase(main):011:0> drop 'test' 0 row(s) in 0.1370 seconds
使用 quit
命令退出命令行并从集群断开连接。
由于Hbase是用Java写的,因此它原生地提供了Java接口,对非Java程序人员,怎么办呢?幸好它提供了thrift接口服务器,因此也可以采用其他语言来编写Hbase的客户端,这里是常用的Hbase python接口的介绍。其他语言也类似。
要使用Hbase的thrift接口,必须将它的服务启动,启动Hbase的thrift-server进程如下:
cd /app/zpy/hbase/bin ./hbase-daemon.sh start thrift 执行jps命令检查: 34533 ThriftServer
thrift默认端口是9090,启动成功后可以查看端口是否起来。
(1)安装依赖
yum install automake libtool flex bison pkgconfig gcc-c++ boost-devel libevent-devel zlib-devel python-devel ruby-devel openssl-devel
(2)安装boost
wget http://sourceforge.net/projects/boost/files/boost/1.53.0/boost_1_53_0.tar.gz tar xvf boost_1_53_0.tar.gz cd boost_1_53_0 ./bootstrap.sh ./b2 install
官网下载 thrift-0.11.0.tar.gz,解压并安装
wget http://mirrors.hust.edu.cn/apache/thrift/0.11.0/thrift-0.11.0.tar.gz tar xzvf thrift-0.11.0.tar.gz cd thrift-0.11.0 mkdir /app/zpy/thrift ./configure --prefix=/app/zpy/thrift make make install
make可能报错如下:
g++: error: /usr/lib64/libboost_unit_test_framework.a: No such file or directory
解决:
find / -name libboost_unit_test_framework.* cp /usr/local/lib/libboost_unit_test_framework.a /usr/lib64/
安装所需包
pip install thrift pip install hbase-thrift
python 脚本如下:
from thrift import Thrift from thrift.transport import TSocket from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol from hbase import Hbase from hbase.ttypes import * transport = TSocket.TSocket('localhost', 9090) protocol = TBinaryProtocol.TBinaryProtocol(transport) client = Hbase.Client(protocol) transport.open() a = client.getTableNames() print(a)
a.启动一个非守护进程模式的REST服务器(ctrl+c 终止)
bin/hbase rest start
b.启动守护进程模式的REST服务器
bin/hbase-daemon.sh start rest
默认启动的是8080端口(可以使用参数在启动时指定端口),可以被访问。curl http://
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.client.Get; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.client.ResultScanner; import org.apache.hadoop.hbase.client.Scan; import org.apache.hadoop.hbase.rest.client.Client; import org.apache.hadoop.hbase.rest.client.Cluster; import org.apache.hadoop.hbase.rest.client.RemoteHTable; import org.apache.hadoop.hbase.util.Bytes; import util.HBaseHelper; import java.io.IOException; /** * Created by root on 15-1-9. */ public class RestExample { public static void main(String[] args) throws IOException { Configuration conf = HBaseConfiguration.create(); HBaseHelper helper = HBaseHelper.getHelper(conf); helper.dropTable("testtable"); helper.createTable("testtable", "colfam1"); System.out.println("Adding rows to table..."); helper.fillTable("testtable", 1, 10, 5, "colfam1"); Cluster cluster=new Cluster(); cluster.add("hadoop",8080); Client client=new Client(cluster); Get get = new Get(Bytes.toBytes("row-30")); get.addColumn(Bytes.toBytes("colfam1"), Bytes.toBytes("col-3")); Result result1 = table.get(get); System.out.println("Get result1: " + result1); Scan scan = new Scan(); scan.setStartRow(Bytes.toBytes("row-10")); scan.setStopRow(Bytes.toBytes("row-15")); scan.addColumn(Bytes.toBytes("colfam1"), Bytes.toBytes("col-5")); ResultScanner scanner = table.getScanner(scan); for (Result result2 : scanner) { System.out.println("Scan row[" + Bytes.toString(result2.getRow()) + "]: " + result2); } } }
Apache MapReduce 是Hadoop提供的软件框架,用来进行大规模数据分析.
mapred
and mapreduce
与 MapReduce 一样,在 HBase 中也有 2 种 mapreduce API 包. org.apache.hadoop.hbase.mapred and org.apache.hadoop.hbase.mapreduce .前者使用旧式风格的 API,后者采用新的模式.相比于前者,后者更加灵活。
HBase MapReduce 读示例
Configuration config = HBaseConfiguration.create(); Job job = new Job(config, "ExampleRead"); job.setJarByClass(MyReadJob.class); // class that contains mapper Scan scan = new Scan(); scan.setCaching(500); // 1 is the default in Scan, which will be bad for MapReduce jobs scan.setCacheBlocks(false); // don't set to true for MR jobs // set other scan attrs ... TableMapReduceUtil.initTableMapperJob( tableName, // input HBase table name scan, // Scan instance to control CF and attribute selection MyMapper.class, // mapper null, // mapper output key null, // mapper output value job); job.setOutputFormatClass(NullOutputFormat.class); // because we aren't emitting anything from mapper boolean b = job.waitForCompletion(true); if (!b) { throw new IOException("error with job!"); }
public static class MyMapper extends TableMapper<Text, Text> { public void map(ImmutableBytesWritable row, Result value, Context context) throws InterruptedException, IOException { // process data for the row from the Result instance. } }
HBase MapReduce 读写示例
Configuration config = HBaseConfiguration.create(); Job job = new Job(config,"ExampleReadWrite"); job.setJarByClass(MyReadWriteJob.class); // class that contains mapper Scan scan = new Scan(); scan.setCaching(500); // 1 is the default in Scan, which will be bad for MapReduce jobs scan.setCacheBlocks(false); // don't set to true for MR jobs // set other scan attrs TableMapReduceUtil.initTableMapperJob( sourceTable, // input table scan, // Scan instance to control CF and attribute selection MyMapper.class, // mapper class null, // mapper output key null, // mapper output value job); TableMapReduceUtil.initTableReducerJob( targetTable, // output table null, // reducer class job); job.setNumReduceTasks(0); boolean b = job.waitForCompletion(true); if (!b) { throw new IOException("error with job!"); }
Hbase提供了一种Web方式的用户接口,用户可以通过Web界面查看Hbase集群的属性等状态信息,web页面分为:Master状态界面,和Zookeeper统计信息页面。
默认访问地址分别是:
ip:60010
ip::60030
ip:60010/zk.jsp
Master状态界面会看到Master状态的详情。
该页面大概分HBase集群信息,任务信息,表信息,RegionServer信息。每一部分又包含了一些具体的属性。
RegionServer状态界面会看到RegionServer状态的详情。
RegionServer的节点属性信息,任务信息和Region信息。
Zookeeper统计信息页面是非常简单的半结构化文本打印信息。
更多实时计算,Hbase,Flink,Kafka等相关技术博文,欢迎关注实时流式计算