java基础知识 (๑• . •๑)
这是崔斯特的第一百零一篇原创文章
ArrayList
和 LinkedList
都是不同步的,也就是不保证线程安全; Arraylist
底层使用的是 Object 数组 ; LinkedList
底层使用的是 双向链表 数据结构(JDK1.6之前为循环链表,JDK1.7取消了循环。注意双向链表和双向循环链表的区别,下面有介绍到!) add(E e)
方法的时候, ArrayList
会默认在将指定的元素追加到此列表的末尾,这种情况时间复杂度就是O(1)。但是如果要在指定位置 i 插入和删除元素的话( add(int index, E element)
)时间复杂度就为 O(n-i)。因为在进行上述操作的时候集合中第 i 和第 i 个元素之后的(n-i)个元素都要执行向后位/向前移一位的操作。 LinkedList
不支持高效的随机元素访问,而 ArrayList
支持。快速随机访问就是通过元素的序号快速获取元素对象(对应于 get(int index)
方法)。 public interface RandomAccess{ }
查看源码我们发现实际上 RandomAccess
接口中什么都没有定义。所以,在我看来 RandomAccess
接口不过是一个标识罢了。标识什么? 标识实现这个接口的类具有随机访问功能。
在 binarySearch(
)方法中,它要判断传入的list 是否 RamdomAccess
的实例,如果是,调用 indexedBinarySearch()
方法,如果不是,那么调用 iteratorBinarySearch()
方法
public static <T> int binarySearch(List<? extends Comparable<?super T>> list, T key){ if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD) return Collections.indexedBinarySearch(list, key); else return Collections.iteratorBinarySearch(list, key); }
ArrayList
实现了 RandomAccess
接口, 而 LinkedList
没有实现。为什么呢?我觉得还是和底层数据结构有关! ArrayList
底层是数组,而 LinkedList
底层是链表。数组天然支持随机访问,时间复杂度为 O(1),所以称为快速随机访问。链表需要遍历到特定位置才能访问特定位置的元素,时间复杂度为 O(n),所以不支持快速随机访问。, ArrayList
实现了 RandomAccess
接口,就表明了他具有快速随机访问功能。 RandomAccess
接口只是标识,并不是说 ArrayList
实现 RandomAccess
接口才具有快速随机访问功能的!
RandomAccess RandomAccess
双向链表:包含两个指针,一个prev指向前一个节点,一个next指向后一个节点。
双向循环链表:最后一个节点的 next 指向head,而 head 的prev指向最后一个节点,构成一个环。
Vector
类的所有方法都是同步的。可以由两个线程安全地访问一个Vector对象、但是一个线程访问Vector的话代码要在同步操作上耗费大量的时间。
Arraylist
不是同步的,所以在不需要保证线程安全时建议使用Arraylist。
详见笔主的这篇文章: 通过源码一步一步分析ArrayList 扩容机制
#HashMap 和 Hashtable 的区别
synchronized
修饰。(如果你要保证线程安全的话就使用 ConcurrentHashMap 吧!); tableSizeFor()
方法保证,下面给出了源代码)。也就是说 HashMap 总是使用2的幂作为哈希表的大小,后面会介绍到为什么是2的幂次方。 public HashMap(int initialCapacity, float loadFactor){ if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity); } public HashMap(int initialCapacity){ this(initialCapacity, DEFAULT_LOAD_FACTOR); }
下面这个方法保证了 HashMap 总是使用2的幂作为哈希表的大小。
/** * Returns a power of two size for the given target capacity. */ static final int tableSizeFor(int cap){ int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; }
如果你看过 HashSet
源码的话就应该知道:HashSet 底层就是基于 HashMap 实现的。(HashSet 的源码非常非常少,因为除了 clone()
、 writeObject()
、 readObject()
是 HashSet 自己不得不实现之外,其他方法都是直接调用 HashMap 中的方法。
HashMap | HashSet |
---|---|
实现了Map接口 | 实现Set接口 |
存储键值对 | 仅存储对象 |
调用 put() 向map中添加元素 |
调用 add() 方法向Set中添加元素 |
HashMap使用键(Key)计算Hashcode | HashSet使用成员对象来计算hashcode值,对于两个对象来说hashcode可能相同,所以equals()方法用来判断对象的相等性, |
当你把对象加入 HashSet
时,HashSet会先计算对象的 hashcode
值来判断对象加入的位置,同时也会与其他加入的对象的hashcode值作比较,如果没有相符的hashcode,HashSet会假设对象没有重复出现。但是如果发现有相同hashcode值的对象,这时会调用 equals()
方法来检查hashcode相等的对象是否真的相同。如果两者相同,HashSet就不会让加入操作成功。(摘自我的Java启蒙书《Head fist java》第二版)
JDK1.8 之前 HashMap
底层是 数组和链表 结合在一起使用也就是 链表散列 。HashMap 通过 key 的 hashCode 经过扰动函数处理过后得到 hash 值,然后通过 (n - 1) & hash 判断当前元素存放的位置(这里的 n 指的是数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。
JDK 1.8 HashMap 的 hash 方法源码:
JDK 1.8 的 hash方法 相比于 JDK 1.7 hash 方法更加简化,但是原理不变。
static final int hash(Object key){ int h; // key.hashCode():返回散列值也就是hashcode // ^ :按位异或 // >>>:无符号右移,忽略符号位,空位都以0补齐 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
对比一下 JDK1.7的 HashMap 的 hash 方法源码.
static int hash(int h){ // This function ensures that hashCodes that differ only by // constant multiples at each bit position have a bounded // number of collisions (approximately 8 at default load factor). h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); }
相比于 JDK1.8 的 hash 方法 ,JDK 1.7 的 hash 方法的性能会稍差一点点,因为毕竟扰动了 4 次。
所谓 “拉链法” 就是:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。
相比于之前的版本, JDK1.8之后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。
TreeMap、TreeSet以及JDK1.8之后的HashMap底层都用到了红黑树。红黑树就是为了解决二叉查找树的缺陷,因为二叉查找树在某些情况下会退化成一个线性结构。
为了能让 HashMap 存取高效,尽量较少碰撞,也就是要尽量把数据分配均匀。我们上面也讲到了过了,Hash 值的范围值-2147483648到2147483647,前后加起来大概40亿的映射空间,只要哈希函数映射得比较均匀松散,一般应用是很难出现碰撞的。但问题是一个40亿长度的数组,内存是放不下的。所以这个散列值是不能直接拿来用的。用之前还要先做对数组的长度取模运算,得到的余数才能用来要存放的位置也就是对应的数组下标。这个数组下标的计算方法是“ (n - 1) & hash
”。(n代表数组长度)。这也就解释了 HashMap 的长度为什么是2的幂次方。
我们首先可能会想到采用%取余的操作来实现。但是,重点来了: “取余(%)操作中如果除数是2的幂次则等价于与其除数减一的与(&)操作(也就是说 hash%length==hash&(length-1)的前提是 length 是2的 n 次方;)。” 并且 采用二进制位操作 &,相对于%能够提高运算效率,这就解释了 HashMap 的长度为什么是2的幂次方。