ConcurrentHashMap是Java中的一个经典的「读不加锁写加锁」的数据结构,但它并不是强一致性的,本文基于JDK1.6对其特性进行一定的分析。
get方法是弱一致的,是什么含义?可能你期望往ConcurrentHashMap底层数据结构中加入一个元素后,立马能对get可见,但ConcurrentHashMap并不能如你所愿。换句话说,put操作将一个元素加入到底层数据结构后,get可能在某段时间内还看不到这个元素,若不考虑内存模型,单从代码逻辑上来看,却是应该可以看得到的。
下面将结合代码和java内存模型相关内容来分析下put/get方法(本文中所有ConcurrentHashMap相关的代码均来自hotspot1.6.0_18)。put方法我们只需关注Segment#put,get方法只需关注Segment#get,在继续之前,先要说明一下Segment里有两个volatile变量:count和table;HashEntry里有一个volatile变量:value。
Segment#put
V put(K key, int hash, V value, boolean onlyIfAbsent) { lock(); try { int c = count; if (c++ > threshold) // ensure capacity rehash(); HashEntry<K,V>[] tab = table; int index = hash & (tab.length - 1); HashEntry<K,V> first = tab[index]; HashEntry<K,V> e = first; while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; V oldValue; if (e != null) { oldValue = e.value; if (!onlyIfAbsent) e.value = value; } else { oldValue = null; ++modCount; tab[index] = new HashEntry<K,V>(key, hash, first, value); count = c; // write-volatile } return oldValue; } finally { unlock(); } }
Segment#get
V get(Object key, int hash) { if (count != 0) { // read-volatile HashEntry<K,V> e = getFirst(hash); while (e != null) { if (e.hash == hash && key.equals(e.key)) { V v = e.value; if (v != null) return v; return readValueUnderLock(e); // recheck } e = e.next; } } return null; }
我们如何确定线程1放入某个变量的值是否对线程2可见?文章开头提到的JLS链接中有说到,当a hb c时,a对c可见,那么我们接下来我们只要寻找put和get之间所有可能的执行轨迹上的hb关系。 要找出hb关系,我们需要先找出与hb相关的Action。为方便,这里将两段代码放到了一张图片上。
可以注意到,同一个Segment实例中的put操作是加了锁的,而对应的get却没有。根据hb关系中的线程间Action类别,可以从上图中找出这些Action,主要是volatile读写和加解锁,也就是图中画了横线的那些。
put操作可以分为两种情况,一是key已经存在,修改对应的value;二是key不存在,将一个新的Entry加入底层数据结构。
key已经存在的情况比较简单,即if (e != null)部分,前面已经说过HashEntry的value是个volatile变量,当线程1给value赋值后,会立马对执行get的线程2可见,而不用等到put方法结束。
key不存在的情况稍微复杂一些,新加一个Entry的逻辑在else中。那么将new HashEntry赋值给tab[index]是否能立刻对执行get的线程可见呢?我们只需分析写tab[index]与读取tab[index]之间是否有hb关系即可。
执行put的线程 | 执行get的线程 |
---|---|
⑧tab[index] = new HashEntry<K,V>(key, hash, first, value) | |
②count = c | |
③if (count != 0) | |
⑨HashEntry e = getFirst(hash); |
tab变量是一个普通的变量,虽然给它赋值的是volatile的table。另外,虽然引用类型(数组类型)的变量table是volatile的,但table中的元素不是volatile的,因此⑧只是一个普通的写操作;count变量是volatile的,因此②是一个volatile写;③很显然是一个volatile读;⑨中getFirst方法中读取了table,因此包含一个volatile读。
根据Synchronization Order,对同一个volatile变量,有volatile写 hb volatile读。在这个执行轨迹中,时间上②在③之前发生,且②是写count,③是读count,都是针对同一个volatile变量count,因此有② hb ③;又因为⑧和②是同一个线程中的,③和⑨是同一个线程中的,根据Program Order,有⑧ hb ②,③ hb ⑨。目前我们有了三组关系了⑧ hb ②,② hb ③,③ hb ⑨,再根据hb关系是可传递的(即若有x hb y且y hb z,可得出x hb z),可以得出⑧ hb ⑨。因此,如果按照上述执行轨迹,⑧中写入的数组元素对⑨中的读取操作是可见的。
再考虑这样一个执行轨迹:
执行put的线程 | 执行get的线程 |
---|---|
⑧tab[index] = new HashEntry<K,V>(key, hash, first, value) | |
③if (count != 0) | |
②count = c | |
⑨HashEntry e = getFirst(hash); |
这里只是变换了下执行顺序。每条语句的volatile读写含义同上,但它们之间的hb关系却改变了。Program Order是我们一直拥有的,即我们有⑧ hb ②,③ hb ⑨。但这次对volatile的count的读时间上发生在对count的写之前,我们无法得出② hb ⑨这层关系了。因此,通过count变量,在这个轨迹上是无法得出⑧ hb ⑨的。那么,存不存在其它可替换关系,让我们仍能得出⑧ hb ⑨呢?
我们要找的是,在⑧之后有一条语句或指令x,在⑨之前有一条语句或指令y,存在x hb y。这样我们可以有⑧ hb x,x hb y, y hb ⑨。就让我们来找一下是否存在这样的x和y。图中的⑤、⑥、⑦、①存在volatile读写,但是它们在⑧之前,因此对确立⑧ hb ⑨这个关系没有用处;同理,④在⑨之后,我们要找的是⑨之前的,因此也对这个问题无益。前面已经分析过了②,③之间没法确立hb关系。
在⑧之后,我们发现一个unlock操作,如果能在⑨之前找到一个lock操作,那么我们要找的x就是unlock,要找的y就是lock,因为Synchronization Order中有unlock hb lock的关系。但是,很不幸运,⑨之前没有lock操作。因此,对于这样的轨迹,是没有⑧ hb ⑨关系的,也就是说,如果某个Segment实例中的put将一个Entry加入到了table中,在未执行count赋值操作之前有另一个线程执行了同一个Segment实例中的get,来获取这个刚加入的Entry中的value,那么是有可能取不到的!
此外,如果getFirst(hash)先执行,tab[index] = new HashEntry<K,V>(key, hash, first, value)后执行,那么,这个get操作也是看不到put的结果的。
clear方法很简单,看下代码即知。
public void clear() { for (int i = 0; i < segments.length; ++i) segments[i].clear(); }
因为没有全局的锁,在清除完一个segments之后,正在清理下一个segments的时候,已经清理segments可能又被加入了数据,因此clear返回的时候,ConcurrentHashMap中是可能存在数据的。因此,clear方法是弱一致的。
ConcurrentHashMap中的迭代器主要包括entrySet、keySet、values方法。它们大同小异,这里选择entrySet解释。当我们调用entrySet返回值的iterator方法时,返回的是EntryIterator,在EntryIterator上调用next方法时,最终实际调用到了HashIterator.advance()方法,看下这个方法:
final void advance() { if (nextEntry != null && (nextEntry = nextEntry.next) != null) return; while (nextTableIndex >= 0) { if ( (nextEntry = currentTable[nextTableIndex--]) != null) return; } while (nextSegmentIndex >= 0) { Segment<K,V> seg = segments[nextSegmentIndex--]; if (seg.count != 0) { currentTable = seg.table; for (int j = currentTable.length - 1; j >= 0; --j) { if ( (nextEntry = currentTable[j]) != null) { nextTableIndex = j - 1; return; } } } } }
这个方法在遍历底层数组。在遍历过程中,如果已经遍历的数组上的内容变化了,迭代器不会抛出ConcurrentModificationException异常。 如果未遍历的数组上的内容发生了变化,则有可能反映到迭代过程中。这就是ConcurrentHashMap迭代器弱一致的表现。
ConcurrentHashMap的弱一致性主要是为了提升效率,是一致性与效率之间的一种权衡。要成为强一致性,就得到处使用锁,甚至是全局锁,这就与HashTable和同步的HashMap一样了。 另外一种数据结构COW也是一样的,通过弱一致性保证读不加锁写加锁,大大提供了读的并发粒度,可以参考 Java中的Copy-On-Write
本文首次发布于S.L’s Blog, 作者 @stuartlau , 转载请保留原文链接.
Previous
关于ZipList和Redis的实现