转载

Java新一代网络编程模型AIO原理及Linux系统AIO介绍

从JDK 7版本开始,Java新加入的文件和网络io特性称为nio2(new io 2, 因为jdk1.4中已经有过一个nio了),包含了众多性能和功能上的改进,其中最重要的部分,就是对异步io的支持,称为Java AIO(asynchronous IO)。

因为AIO的实施需充分调用OS参与,IO需要操作系统支持、并发也同样需要操作系统的支持,所以性能方面不同操作系统差异会比较明显。所以本文也附带介绍了Linux 2.6及以后版本新增的AIO特性(因为这跟Java AIO是对应关系)。

Java AIO

1 基本原理

目前为止,Java共支持3种网络编程模型:BIO、NIO、AIO:

  • Java BIO : 同步并阻塞,服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需要启动一个线程进行处理,如果这个连接不做任何事情会造成不必要的线程开销,当然可以通过线程池机制改善。
  • Java NIO : 同步非阻塞,服务器实现模式为一个请求一个线程,即客户端发送的连接请求都会注册到多路复用器上,多路复用器轮询到连接有I/O请求时才启动一个线程进行处理。
  • Java AIO(NIO.2) : 异步非阻塞,服务器实现模式为一个有效请求一个线程,客户端的I/O请求都是由OS先完成了再通知服务器应用去启动线程进行处理。

BIO、NIO、AIO适用场景分析:

  • BIO方式适用于连接数目比较小且固定的架构,这种方式对服务器资源要求比较高,并发局限于应用中,JDK1.4以前的唯一选择,但程序直观简单易理解。
  • NIO方式适用于连接数目多且连接比较短(轻操作)的架构,比如聊天服务器,并发局限于应用中,编程比较复杂,JDK1.4开始支持。
  • AIO方式使用于连接数目多且连接比较长(重操作)的架构,比如相册服务器,充分调用OS参与并发操作,编程比较复杂,JDK7开始支持。

2 AIO介绍

jdk在1.4版本的nio中提供了对非阻塞多路复用同步io模型的支持,但是在Windows上是基于较低效select/poll实现的。

jdk1.7中提供对aio的支持后,带来了两方面的好处:

  • Windows上可以使用iocp了。
  • 简化了网络变成模型。异步io相比较非阻塞多路复用模型更易理解,开发更为简单。

和多路复用的java nio相比较,可以发现,异步io是在数据读取或者写入调用已经完成的时候,再通知调用者,而非阻塞多路复用io则是在有数据就绪,可以读写的时候通知调用者,读写仍然是由调用者执行并且是阻塞的(这意味着如果要同时进行其他工作,要控制读写操作不能阻塞太长时间或者需要将其放去单独的io线程执行)。

JDK7中的java aio新增的类和接口主要有:

  • AsynchronousServerSocketChannel ,对应于bio中的ServerSocket和nio中的ServerSocketChannel,用于server端的网络程序。
  • AsynchronousSocketChannel,对云关于bio中的Socket和nio中的SocketChannel,用于client端的网络程序。
  • CompletionHandler,回调接口,在socket进行accept/connect/read/write等操作时,可以传入一个CompletionHandler的实现,操作执行完毕后,会调用注册的CompletionHandler。

除了CompletionHandler这种回调方式,aio中还支持返回Future对象,使用Future来设定回调操作。

Linux AIO

1 Linux AIO 简介

Linux 异步 I/O 是 Linux 内核中提供的一个相当新的增强。它是 2.6 版本内核的一个标准特性,但是我们在 2.4 版本内核的补丁中也可以找到它。AIO 背后的基本思想是允许进程发起很多 I/O 操作,而不用阻塞或等待任何操作完成。稍后或在接收到 I/O 操作完成的通知时,进程就可以检索 I/O 操作的结果。

2 Linux 的 I/O 模型

在深入介绍 AIO API 之前,让我们先来探索一下 Linux 上可以使用的不同 I/O 模型。这并不是一个详尽的介绍,但是我们将试图介绍最常用的一些模型来解释它们与异步 I/O 之间的区别。图 1 给出了同步和异步模型,以及阻塞和非阻塞的模型。

基本 Linux I/O 模型的简单矩阵:

Java新一代网络编程模型AIO原理及Linux系统AIO介绍

每个 I/O 模型都有自己的使用模式,它们对于特定的应用程序都有自己的优点。

同步阻塞 I/O:

如下图所示:传统的阻塞 I/O 模型,这也是目前应用程序中最为常用的一种模型。其行为非常容易理解,其用法对于典型的应用程序来说都非常有效。在调用 read 系统调用时,应用程序会阻塞并对内核进行上下文切换。然后会触发读操作,当响应返回时(从我们正在从中读取的设备中返回),数据就被移动到用户空间的缓冲区中。然后应用程序就会解除阻塞(read 调用返回)。

Java新一代网络编程模型AIO原理及Linux系统AIO介绍

从应用程序的角度来说,read 调用会延续很长时间。实际上,在内核执行读操作和其他工作时,应用程序的确会被阻塞。

同步非阻塞 I/O:

同步阻塞 I/O 的一种效率稍低的变种是同步非阻塞 I/O。在这种模型中,设备是以非阻塞的形式打开的。这意味着 I/O 操作不会立即完成,read 操作可能会返回一个错误代码,说明这个命令不能立即满足(EAGAIN 或 EWOULDBLOCK),如下图所示。

Java新一代网络编程模型AIO原理及Linux系统AIO介绍

非阻塞的实现是 I/O 命令可能并不会立即满足,需要应用程序调用许多次来等待操作完成。这可能效率不高,因为在很多情况下,当内核执行这个命令时,应用程序必须要进行忙碌等待,直到数据可用为止,或者试图执行其他工作。正如图 3 所示的一样,这个方法可以引入 I/O 操作的延时,因为数据在内核中变为可用到用户调用 read 返回数据之间存在一定的间隔,这会导致整体数据吞吐量的降低。

异步阻塞 I/O:

另外一个阻塞解决方案是带有阻塞通知的非阻塞 I/O。在这种模型中,配置的是非阻塞 I/O,然后使用阻塞 select 系统调用来确定一个 I/O 描述符何时有操作。使 select 调用非常有趣的是它可以用来为多个描述符提供通知,而不仅仅为一个描述符提供通知。对于每个提示符来说,我们可以请求这个描述符可以写数据、有读数据可用以及是否发生错误的通知。

Java新一代网络编程模型AIO原理及Linux系统AIO介绍

select 调用的主要问题是它的效率不是非常高。尽管这是异步通知使用的一种方便模型,但是对于高性能的 I/O 操作来说不建议使用。

异步非阻塞 I/O(AIO):

最后,异步非阻塞 I/O 模型是一种处理与 I/O 重叠进行的模型。读请求会立即返回,说明 read 请求已经成功发起了。在后台完成读操作时,应用程序然后会执行其他处理操作。当 read 的响应到达时,就会产生一个信号或执行一个基于线程的回调函数来完成这次 I/O 处理过程。

Java新一代网络编程模型AIO原理及Linux系统AIO介绍

在一个进程中为了执行多个 I/O 请求而对计算操作和 I/O 处理进行重叠处理的能力利用了处理速度与 I/O 速度之间的差异。当一个或多个 I/O 请求挂起时,CPU 可以执行其他任务;或者更为常见的是,在发起其他 I/O 的同时对已经完成的 I/O 进行操作。

3异步 I/O(AIO) 的动机

从前面 I/O 模型的分类中,我们可以看出 AIO 的动机。这种阻塞模型需要在 I/O 操作开始时阻塞应用程序。这意味着不可能同时重叠进行处理和 I/O 操作。同步非阻塞模型允许处理和 I/O 操作重叠进行,但是这需要应用程序根据重现的规则来检查 I/O 操作的状态。这样就剩下异步非阻塞 I/O 了,它允许处理和 I/O 操作重叠进行,包括 I/O 操作完成的通知。

除了需要阻塞之外,select 函数所提供的功能(异步阻塞 I/O)与 AIO 类似。不过,它是对通知事件进行阻塞,而不是对 I/O 调用进行阻塞。

总结

使用异步 I/O(AIO)可以帮助我们构建 I/O 速度更快、效率更高的应用程序。如果我们的应用程序可以对处理和 I/O 操作重叠进行,那么 AIO 就可以帮助我们构建可以更高效地使用可用 CPU 资源的应用程序。

尽管这种 I/O 模型与在大部分 Linux 应用程序中使用的传统阻塞模式都不同,但是异步通知模型在概念上来说却非常简单,可以简化我们的设计。

更多资料

来源:http://www.52im.net/thread-306-1-1.html

另外, 关于bio和nio可以参考下面文字

BIO、NIO、AIO 的区别是什么?

同/异步、阻/非阻塞的区别是什么?

文件读写最优雅的实现方式是什么?

NIO 如何实现多路复用功能?

带着以上这几个问题,让我们一起进入IO的世界吧。

在开始之前,我们先来思考一个问题:我们经常所说的“IO”的全称到底是什么?

可能很多人看到这个问题和我一样一脸懵逼,IO的全称其实是:Input/Output的缩写。

一、IO 介绍

我们通常所说的 BIO 是相对于 NIO 来说的,BIO 也就是 Java 开始之初推出的 IO 操作模块,BIO 是 BlockingIO 的缩写,顾名思义就是阻塞 IO 的意思。

1.1 BIO、NIO、AIO的区别

  1. BIO 就是传统的 java.io 包,它是基于流模型实现的,交互的方式是同步、阻塞方式,也就是说在读入输入流或者输出流时,在读写动作完成之前,线程会一直阻塞在那里,它们之间的调用时可靠的线性顺序。它的有点就是代码比较简单、直观;缺点就是 IO 的效率和扩展性很低,容易成为应用性能瓶颈。
  2. NIO 是 Java 1.4 引入的 java.nio 包,提供了 Channel、Selector、Buffer 等新的抽象,可以构建多路复用的、同步非阻塞 IO 程序,同时提供了更接近操作系统底层高性能的数据操作方式。
  3. AIO 是 Java 1.7 之后引入的包,是 NIO 的升级版本,提供了异步非堵塞的 IO 操作方式,所以人们叫它 AIO(Asynchronous IO),异步 IO 是基于事件和回调机制实现的,也就是应用操作之后会直接返回,不会堵塞在那里,当后台处理完成,操作系统会通知相应的线程进行后续的操作。

1.2 全面认识 IO

传统的 IO 大致可以分为4种类型:

  • InputStream、OutputStream 基于字节操作的 IO
  • Writer、Reader 基于字符操作的 IO
  • File 基于磁盘操作的 IO
  • Socket 基于网络操作的 IO

java.net 下提供的 Scoket 很多时候人们也把它归为 同步阻塞 IO ,因为网络通讯同样是 IO 行为。

java.io 下的类和接口很多,但大体都是 InputStream、OutputStream、Writer、Reader 的子集,所有掌握这4个类和File的使用,是用好 IO 的关键。

1.3 IO 使用

接下来看 InputStream、OutputStream、Writer、Reader 的继承关系图和使用示例。

1.3.1 InputStream 使用

继承关系图和类方法,如下图:

Java新一代网络编程模型AIO原理及Linux系统AIO介绍

InputStream 使用示例:

InputStream inputStream = new FileInputStream("D://log.txt");
byte[] bytes = new byte[inputStream.available()];
inputStream.read(bytes);
String str = new String(bytes, "utf-8");
System.out.println(str);
inputStream.close();

1.3.2 OutputStream 使用

继承关系图和类方法,如下图:

Java新一代网络编程模型AIO原理及Linux系统AIO介绍

OutputStream 使用示例:

OutputStream outputStream = new FileOutputStream("D://log.txt",true); 
// 参数二,表示是否追加,true=追加outputStream.write("你好,老王".getBytes("utf-8"));
outputStream.close();

1.3.3 Writer 使用

Writer 继承关系图和类方法,如下图:

Java新一代网络编程模型AIO原理及Linux系统AIO介绍

Writer 使用示例:

Writer writer = new FileWriter("D://log.txt",true);
 // 参数二,是否追加文件,true=追加writer.append("老王,你好");
writer.close();

1.3.4 Reader 使用

Reader 继承关系图和类方法,如下图:

Java新一代网络编程模型AIO原理及Linux系统AIO介绍

Reader 使用示例:

Reader reader = new FileReader(filePath);
BufferedReader bufferedReader = new BufferedReader(reader);
StringBuffer bf = new StringBuffer();
String str;
while ((str = bufferedReader.readLine()) != null) {
    bf.append(str + "/n");
}
bufferedReader.close();
reader.close();
System.out.println(bf.toString());

二、同步、异步、阻塞、非阻塞

上面说了很多关于同步、异步、阻塞和非阻塞的概念,接下来就具体聊一下它们4个的含义,以及组合之后形成的性能分析。

2.1 同步与异步

同步就是一个任务的完成需要依赖另外一个任务时,只有等待被依赖的任务完成后,依赖的任务才能算完成,这是一种可靠的任务序列。要么成功都成功,失败都失败,两个任务的状态可以保持一致。而异步是不需要等待被依赖的任务完成,只是通知被依赖的任务要完成什么工作,依赖的任务也立即执行,只要自己完成了整个任务就算完成了。至于被依赖的任务最终是否真正完成,依赖它的任务无法确定,所以它是不可靠的任务序列。我们可以用打电话和发短信来很好的比喻同步与异步操作。

2.2 阻塞与非阻塞

阻塞与非阻塞主要是从 CPU 的消耗上来说的,阻塞就是 CPU 停下来等待一个慢的操作完成 CPU 才接着完成其它的事。非阻塞就是在这个慢的操作在执行时 CPU 去干其它别的事,等这个慢的操作完成时,CPU 再接着完成后续的操作。虽然表面上看非阻塞的方式可以明显的提高 CPU 的利用率,但是也带了另外一种后果就是系统的线程切换增加。增加的 CPU 使用时间能不能补偿系统的切换成本需要好好评估。

2.3 同/异、阻/非堵塞 组合

同/异、阻/非堵塞的组合,有四种类型,如下表:

Java新一代网络编程模型AIO原理及Linux系统AIO介绍
Java新一代网络编程模型AIO原理及Linux系统AIO介绍

# 三、优雅的文件读写

Java 7 之前文件的读取是这样的:

// 添加文件
FileWriter fileWriter = new FileWriter(filePath, true);
fileWriter.write(Content);
fileWriter.close();

// 读取文件FileReader fileReader = new FileReader(filePath);
BufferedReader bufferedReader = new BufferedReader(fileReader);
StringBuffer bf = new StringBuffer();
String str;while ((str = bufferedReader.readLine()) != null) {
    bf.append(str + "/n");
}
bufferedReader.close();
fileReader.close();
System.out.println(bf.toString());

Java 7 引入了Files(java.nio包下)的,大大简化了文件的读写,如下:

// 写入文件(追加方式:StandardOpenOption.APPEND)
Files.write(Paths.get(filePath), Content.getBytes(StandardCharsets.UTF_8), StandardOpenOption.APPEND);

// 读取文件
byte[] data = Files.readAllBytes(Paths.get(filePath));
System.out.println(new String(data, StandardCharsets.UTF_8));

读写文件都是一行代码搞定,没错这就是最优雅的文件操作。

Files 下还有很多有用的方法,比如创建多层文件夹,写法上也简单了:

// 创建多(单)层目录(如果不存在创建,存在不会报错)
new File("D://a//b").mkdirs();

四、Socket 和 NIO 的多路复用

本节带你实现最基础的 Socket 的同时,同时会实现 NIO 多路复用,还有 AIO 中 Socket 的实现。

4.1 传统的 Socket 实现

接下来我们将会实现一个简单的 Socket,服务器端只发给客户端信息,再由客户端打印出来的例子,代码如下:

int port = 4343; //端口号
// Socket 服务器端(简单的发送信息)
Thread sThread = new Thread(new Runnable() {
    @Override
    public void run() {
        try {
            ServerSocket serverSocket = new ServerSocket(port);
            while (true) {
                // 等待连接
                Socket socket = serverSocket.accept();
                Thread sHandlerThread = new Thread(new Runnable() {
                    @Override
                    public void run() {
                        try (PrintWriter printWriter = new PrintWriter(socket.getOutputStream())) {
                            printWriter.println("hello world!");
                            printWriter.flush();
                        } catch (IOException e) {
                            e.printStackTrace();
                        }
                    }
                });
                sHandlerThread.start();
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
});
sThread.start();

// Socket 客户端(接收信息并打印)
try (Socket cSocket = new Socket(InetAddress.getLocalHost(), port)) {
    BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(cSocket.getInputStream()));
    bufferedReader.lines().forEach(s -> System.out.println("客户端:" + s));} catch (UnknownHostException e) {
    e.printStackTrace();
} catch (IOException e) {
    e.printStackTrace();
}
  • 调用 accept 方法,阻塞等待客户端连接;
  • 利用 Socket 模拟了一个简单的客户端,只进行连接、读取和打印;

在 Java 中,线程的实现是比较重量级的,所以线程的启动或者销毁是很消耗服务器的资源的,即使使用线程池来实现,使用上述传统的 Socket 方式,当连接数极具上升也会带来性能瓶颈,原因是线程的上线文切换开销会在高并发的时候体现的很明显,并且以上操作方式还是同步阻塞式的编程,性能问题在高并发的时候就会体现的尤为明显。

以上的流程,如下图:

Java新一代网络编程模型AIO原理及Linux系统AIO介绍

4.2 NIO 多路复用

介于以上高并发的问题,NIO 的多路复用功能就显得意义非凡了。

NIO 是利用了单线程轮询事件的机制,通过高效地定位就绪的 Channel,来决定做什么,仅仅 select 阶段是阻塞的,可以有效避免大量客户端连接时,频繁线程切换带来的问题,应用的扩展能力有了非常大的提高。

// NIO 多路复用
ThreadPoolExecutor threadPool = new ThreadPoolExecutor(4, 4,
        60L, TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>());
threadPool.execute(new Runnable() {
    @Override
    public void run() {
        try (Selector selector = Selector.open();
             ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();) {
            serverSocketChannel.bind(new InetSocketAddress(InetAddress.getLocalHost(), port));
            serverSocketChannel.configureBlocking(false);
            serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);
            while (true) {
                selector.select(); // 阻塞等待就绪的Channel
                Set<SelectionKey> selectionKeys = selector.selectedKeys();
                Iterator<SelectionKey> iterator = selectionKeys.iterator();
                while (iterator.hasNext()) {
                    SelectionKey key = iterator.next();
                    try (SocketChannel channel = ((ServerSocketChannel) key.channel()).accept()) {
                        channel.write(Charset.defaultCharset().encode("你好,世界"));
                    }
                    iterator.remove();
                }
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
});
// Socket 客户端(接收信息并打印)
try (Socket cSocket = new Socket(InetAddress.getLocalHost(), port)) {
    BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(cSocket.getInputStream()));
    bufferedReader.lines().forEach(s -> System.out.println("NIO 客户端:" + s));
} catch (IOException e) {
    e.printStackTrace();
}
  • 首先,通过 Selector.open() 创建一个 Selector,作为类似调度员的角色;
  • 然后,创建一个 ServerSocketChannel,并且向 Selector 注册,通过指定 SelectionKey.OP_ACCEPT,告诉调度员,它关注的是新的连接请求;
  • 为什么我们要明确配置非阻塞模式呢?这是因为阻塞模式下,注册操作是不允许的,会抛出 IllegalBlockingModeException 异常;
  • Selector 阻塞在 select 操作,当有 Channel 发生接入请求,就会被唤醒;

下面的图,可以有效的说明 NIO 复用的流程:

Java新一代网络编程模型AIO原理及Linux系统AIO介绍

就这样 NIO 的多路复用就大大提升了服务器端响应高并发的能力。

4.3 AIO 版 Socket 实现

Java 1.7 提供了 AIO 实现的 Socket 是这样的,如下代码:

// AIO线程复用版
Thread sThread = new Thread(new Runnable() {
    @Override
    public void run() {
        AsynchronousChannelGroup group = null;
        try {
            group = AsynchronousChannelGroup.withThreadPool(Executors.newFixedThreadPool(4));
            AsynchronousServerSocketChannel server = AsynchronousServerSocketChannel.open(group).bind(new InetSocketAddress(InetAddress.getLocalHost(), port));
            server.accept(null, new CompletionHandler<AsynchronousSocketChannel, AsynchronousServerSocketChannel>() {
                @Override
                public void completed(AsynchronousSocketChannel result, AsynchronousServerSocketChannel attachment) {
                    server.accept(null, this); // 接收下一个请求
                    try {
                        Future<Integer> f = result.write(Charset.defaultCharset().encode("你好,世界"));
                        f.get();
                        System.out.println("服务端发送时间:" + new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()));
                        result.close();
                    } catch (InterruptedException | ExecutionException | IOException e) {
                        e.printStackTrace();
                    }
                }

                @Override
                public void failed(Throwable exc, AsynchronousServerSocketChannel attachment) {
                }
            });
            group.awaitTermination(Long.MAX_VALUE, TimeUnit.SECONDS);
        } catch (IOException | InterruptedException e) {
            e.printStackTrace();
        }
    }
});
sThread.start();

// Socket 客户端
AsynchronousSocketChannel client = AsynchronousSocketChannel.open();
Future<Void> future = client.connect(new InetSocketAddress(InetAddress.getLocalHost(), port));
future.get();
ByteBuffer buffer = ByteBuffer.allocate(100);
client.read(buffer, null, new CompletionHandler<Integer, Void>() {
    @Override
    public void completed(Integer result, Void attachment) {
        System.out.println("客户端打印:" + new String(buffer.array()));
    }

    @Override
    public void failed(Throwable exc, Void attachment) {
        exc.printStackTrace();
        try {
            client.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
});
Thread.sleep(10 * 1000);

五、总结

以上基本就是 IO 从 1.0 到目前版本(本文的版本)JDK 8 的核心使用操作了,可以看出来 IO 作为比较常用的基础功能,发展变化的改动也很大,而且使用起来也越来越简单了,IO 的操作也是比较好理解的,一个输入一个输出,掌握好了输入输出也就掌握好了 IO,Socket 作为网络交互的集成功能,显然 NIO 的多路复用,给 Socket 带来了更多的活力和选择,用户可以根据自己的实际场景选择相应的代码策略。

当然本文的最后,也给各位看官大爷,附上了本文的示例代码: https:// github.com/vipstone/jav a-core-example

来源:https://zhuanlan.zhihu.com/p/51453522

原文  http://www.iigrowing.cn/java_xin_yi_dai_wang_luo_bian_cheng_mo_xing_aio_yuan_li_ji_linux_xi_tong_aio_jie_shao.html
正文到此结束
Loading...