Java中的大部分同步类(Lock、Semaphore、ReentrantLock等)都是基于AbstractQueuedSynchronizer(简称为AQS)实现的。
AQS是一种提供了原子式管理同步状态、阻塞和唤醒线程功能以及队列模型的简单框架。
本文会从应用层逐渐深入到原理层,并通过ReentrantLock的基本特性和ReentrantLock与AQS的关联,来深入解读AQS相关独占锁的知识点,同时采取问答的模式来帮助大家理解AQS。
由于篇幅原因,本篇文章主要阐述AQS中独占锁的逻辑和Sync Queue,不讲述包含共享锁和Condition Queue的部分(本篇文章核心为AQS原理剖析,只是简单介绍了ReentrantLock,感兴趣同学可以阅读一下ReentrantLock的源码)。
下面列出本篇文章的大纲和思路,以便于大家更好地理解:
ReentrantLock意思为可重入锁,指的是一个线程能够对一个临界资源重复加锁。为了帮助大家更好地理解ReentrantLock的特性,我们先将ReentrantLock跟常用的Synchronized进行比较,其特性如下(蓝色部分为本篇文章主要剖析的点):
下面通过伪代码,进行更加直观的比较:
// **************************Synchronized的使用方式************************** // 1.用于代码块 synchronized (this) {} // 2.用于对象 synchronized (object) {} // 3.用于方法 public synchronized void test () {} // 4.可重入 for (int i = 0; i < 100; i++) { synchronized (this) {} } // **************************ReentrantLock的使用方式************************** public void test () throw Exception { // 1.初始化选择公平锁、非公平锁 ReentrantLock lock = new ReentrantLock(true); // 2.可用于代码块 lock.lock(); try { try { // 3.支持多种加锁方式,比较灵活; 具有可重入特性 if(lock.tryLock(100, TimeUnit.MILLISECONDS)){ } } finally { // 4.手动释放锁 lock.unlock() } } finally { lock.unlock(); } }复制代码
通过上文我们已经了解,ReentrantLock支持公平锁和非公平锁(关于公平锁和非公平锁的原理分析,可参考《 不可不说的Java“锁”事 》),并且ReentrantLock的底层就是由AQS来实现的。那么ReentrantLock是如何通过公平锁和非公平锁与AQS关联起来呢?我们着重从这两者的加锁过程来理解一下它们与AQS之间的关系(加锁过程中与AQS的关联比较明显,解锁流程后续会介绍)。非公平锁源码中的加锁流程如下:
// java.util.concurrent.locks.ReentrantLock#NonfairSync // 非公平锁 static final class NonfairSync extends Sync { ... final void lock() { if (compareAndSetState(0, 1)) setExclusiveOwnerThread(Thread.currentThread()); else acquire(1); } ... } 复制代码
这块代码的含义为:
第一步很好理解,但第二步获取锁失败后,后续的处理策略是怎么样的呢?这块可能会有以下思考:
带着非公平锁的这些问题,再看下公平锁源码中获锁的方式:
// java.util.concurrent.locks.ReentrantLock#FairSync static final class FairSync extends Sync { ... final void lock() { acquire(1); } ... } 复制代码
看到这块代码,我们可能会存在这种疑问:Lock函数通过Acquire方法进行加锁,但是具体是如何加锁的呢?
结合公平锁和非公平锁的加锁流程,虽然流程上有一定的不同,但是都调用了Acquire方法,而Acquire方法是FairSync和UnfairSync的父类AQS中的核心方法。
对于上边提到的问题,其实在ReentrantLock类源码中都无法解答,而这些问题的答案,都是位于Acquire方法所在的类AbstractQueuedSynchronizer中,也就是本文的核心——AQS。
下面我们会对AQS以及ReentrantLock和AQS的关联做详细介绍(相关问题答案会在2.3.5小节中解答)。
首先,我们通过下面的架构图来整体了解一下AQS框架:
下面我们会从整体到细节,从流程到方法逐一剖析AQS框架,主要分析过程如下:
AQS核心思想是,如果被请求的共享资源空闲,那么就将当前请求资源的线程设置为有效的工作线程,将共享资源设置为锁定状态;如果共享资源被占用,就需要一定的阻塞等待唤醒机制来保证锁分配。
这个机制主要用的是CLH队列的变体实现的,将暂时获取不到锁的线程加入到队列中。CLH:Craig、Landin and Hagersten队列,是单向链表,AQS中的队列是CLH变体的虚拟双向队列(FIFO),AQS是通过将每条请求共享资源的线程封装成一个节点来实现锁的分配。主要原理图如下:
AQS使用一个Volatile的int类型的成员变量来表示同步状态,通过内置的FIFO队列来完成资源获取的排队工作,通过CAS完成对State值的修改。
先来看下AQS中最基本的数据结构——Node,Node即为上面CLH变体队列中的节点。
解释一下几个方法和属性值的含义:
线程两种锁的模式:
waitStatus有下面几个枚举值:
在了解数据结构后,接下来了解一下AQS的同步状态——State。AQS中维护了一个名为state的字段,意为同步状态,是由Volatile修饰的,用于展示当前临界资源的获锁情况。
// java.util.concurrent.locks.AbstractQueuedSynchronizer private volatile int state; 复制代码
下面提供了几个访问这个字段的方法:
这几个方法都是Final修饰的,说明子类中无法重写它们。我们可以通过修改State字段表示的同步状态来实现多线程的独占模式和共享模式(加锁过程)。
对于我们自定义的同步工具,需要自定义获取同步状态和释放状态的方式,也就是AQS架构图中的第一层:API层。
从架构图中可以得知,AQS提供了大量用于自定义同步器实现的Protected方法。
自定义同步器实现的相关方法也只是为了通过修改State字段来实现多线程的独占模式或者共享模式。
自定义同步器需要实现以下方法(ReentrantLock需要实现的方法如下,并不是全部):
一般来说,自定义同步器要么是独占方式,要么是共享方式,它们也只需实现tryAcquire-tryRelease、tryAcquireShared-tryReleaseShared中的一种即可。
AQS也支持自定义同步器同时实现独占和共享两种方式,如ReentrantReadWriteLock。ReentrantLock是独占锁,所以实现了tryAcquire-tryRelease。
以非公平锁为例,这里主要阐述一下非公平锁与AQS之间方法的关联之处,具体每一处核心方法的作用会在文章后面详细进行阐述。
为了帮助大家理解ReentrantLock和AQS之间方法的交互过程,以非公平锁为例,我们将加锁和解锁的交互流程单独拎出来强调一下,以便于对后续内容的理解。
加锁:
解锁:
通过上面的描述,大概可以总结出ReentrantLock加锁解锁时API层核心方法的映射关系。
ReentrantLock中公平锁和非公平锁在底层是相同的,这里以非公平锁为例进行分析。在非公平锁中,有一段这样的代码:
// java.util.concurrent.locks.ReentrantLock static final class NonfairSync extends Sync { ... final void lock() { if (compareAndSetState(0, 1)) setExclusiveOwnerThread(Thread.currentThread()); else acquire(1); } ... } 看一下这个Acquire是怎么写的:// java.util.concurrent.locks.AbstractQueuedSynchronizer public final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); } 复制代码
再看一下tryAcquire方法:
// java.util.concurrent.locks.AbstractQueuedSynchronizer protected boolean tryAcquire(int arg) { throw new UnsupportedOperationException(); } 复制代码
可以看出,这里只是AQS的简单实现,具体获取锁的实现方法是由各自的公平锁和非公平锁单独实现的(以ReentrantLock为例)。
如果该方法返回了True,则说明当前线程获取锁成功,就不用往后执行了;如果获取失败,就需要加入到等待队列中。下面会详细解释线程是何时以及怎样被加入进等待队列中的。
当执行Acquire(1)时,会通过tryAcquire获取锁。在这种情况下,如果获取锁失败,就会调用addWaiter加入到等待队列中去。
获取锁失败后,会执行addWaiter(Node.EXCLUSIVE)加入等待队列,具体实现方法如下:
// java.util.concurrent.locks.AbstractQueuedSynchronizer private Node addWaiter(Node mode) { Node node = new Node(Thread.currentThread(), mode); // Try the fast path of enq; backup to full enq on failure Node pred = tail; if (pred != null) { node.prev = pred; if (compareAndSetTail(pred, node)) { pred.next = node; return node; } } enq(node); return node; } private final boolean compareAndSetTail(Node expect, Node update) { return unsafe.compareAndSwapObject(this, tailOffset, expect, update); } 复制代码
主要的流程如下:
(1)通过当前的线程和锁模式新建一个节点。
(2)Pred指针指向尾节点Tail。
(3)将New中Node的Prev指针指向Pred。
(4)通过compareAndSetTail方法,完成尾节点的设置。
这个方法主要是对tailOffset和Expect进行比较,如果tailOffset的Node和Expect的Node地址是相同的,那么设置Tail的值为Update的值。
// java.util.concurrent.locks.AbstractQueuedSynchronizer static { try { stateOffset = unsafe.objectFieldOffset(AbstractQueuedSynchronizer.class.getDeclaredField("state")); headOffset = unsafe.objectFieldOffset(AbstractQueuedSynchronizer.class.getDeclaredField("head")); tailOffset = unsafe.objectFieldOffset(AbstractQueuedSynchronizer.class.getDeclaredField("tail")); waitStatusOffset = unsafe.objectFieldOffset(Node.class.getDeclaredField("waitStatus")); nextOffset = unsafe.objectFieldOffset(Node.class.getDeclaredField("next")); } catch (Exception ex) { throw new Error(ex); } } 复制代码
从AQS的静态代码块可以看出,都是获取一个对象的属性相对于该对象在内存当中的偏移量,这样我们就可以根据这个偏移量在对象内存当中找到这个属性。
tailOffset指的是tail对应的偏移量,所以这个时候会将new出来的Node置为当前队列的尾节点。同时,由于是双向链表,也需要将前一个节点指向尾节点。
(5) 如果Pred指针是Null(说明等待队列中没有元素),或者当前Pred指针和Tail指向的位置不同(说明被别的线程已经修改),就需要看一下Enq的方法。
// java.util.concurrent.locks.AbstractQueuedSynchronizer private Node enq(final Node node) { for (;;) { Node t = tail; if (t == null) { // Must initialize if (compareAndSetHead(new Node())) tail = head; } else { node.prev = t; if (compareAndSetTail(t, node)) { t.next = node; return t; } } } } 复制代码
如果没有被初始化,需要进行初始化一个头结点出来。
但请注意,初始化的头结点并不是当前线程节点,而是调用了无参构造函数的节点。如果经历了初始化或者并发导致队列中有元素,则与之前的方法相同。
其实,addWaiter就是一个在双端链表添加尾节点的操作,需要注意的是,双端链表的头结点是一个无参构造函数的头结点。
总结一下,线程获取锁的时候,过程大体如下:
a. 当没有线程获取到锁时,线程1获取锁成功。
b. 线程2申请锁,但是锁被线程1占有。
c. 如果再有线程要获取锁,依次在队列中往后排队即可。
回到上边的代码,hasQueuedPredecessors是公平锁加锁时判断等待队列中是否存在有效节点的方法。
如果返回False,说明当前线程可以争取共享资源;如果返回True,说明队列中存在有效节点,当前线程必须加入到等待队列中。
// java.util.concurrent.locks.ReentrantLock public final boolean hasQueuedPredecessors() { // The correctness of this depends on head being initialized // before tail and on head.next being accurate if the current // thread is first in queue. Node t = tail; // Read fields in reverse initialization order Node h = head; Node s; return h != t && ((s = h.next) == null || s.thread != Thread.currentThread()); } 复制代码
看到这里,我们理解一下h != t && ((s = h.next) == null || s.thread != Thread.currentThread());为什么要判断的头结点的下一个节点?第一个节点储存的数据是什么?
a. 如果(s = h.next) == null,等待队列正在有线程进行初始化,但只是进行到了Tail指向Head,没有将Head指向Tail,此时队列中有元素,需要返回True(这块具体见下边代码分析)。
b. 如果(s = h.next) != null,说明此时队列中至少有一个有效节点。如果此时s.thread == Thread.currentThread(),说明等待队列的第一个有效节点中的线程与当前线程相同,那么当前线程是可以获取资源的;如果s.thread != Thread.currentThread(),说明等待队列的第一个有效节点线程与当前线程不同,当前线程必须加入进等待队列。
// java.util.concurrent.locks.AbstractQueuedSynchronizer#enq if (t == null) { // Must initialize if (compareAndSetHead(new Node())) tail = head; } else { node.prev = t; if (compareAndSetTail(t, node)) { t.next = node; return t; } }复制代码
节点入队不是原子操作,所以会出现短暂的head != tail,此时Tail指向最后一个节点,而且Tail指向Head。如果Head没有指向Tail(可见5、6、7行),这种情况下也需要将相关线程加入队列中。所以这块代码是为了解决极端情况下的并发问题。
回到最初的源码:
// java.util.concurrent.locks.AbstractQueuedSynchronizer public final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); } 复制代码
上文解释了addWaiter方法,这个方法其实就是把对应的线程以Node的数据结构形式加入到双端队列里,返回的是一个包含该线程的Node。
而这个Node会作为参数,进入到acquireQueued方法中。acquireQueued方法可以对排队中的线程进行“获锁”操作。
总的来说,一个线程获取锁失败了,被放入等待队列,acquireQueued会把放入队列中的线程不断去获取锁,直到获取成功或者不再需要获取(中断)。
下面我们从“何时出队列?”和“如何出队列?”两个方向来分析一下acquireQueued源码:
// java.util.concurrent.locks.AbstractQueuedSynchronizer final boolean acquireQueued(final Node node, int arg) { // 标记是否成功拿到资源 boolean failed = true; try { // 标记等待过程中是否中断过 boolean interrupted = false; // 开始自旋,要么获取锁,要么中断 for (;;) { // 获取当前节点的前驱节点 final Node p = node.predecessor(); // 如果p是头结点,说明当前节点在真实数据队列的首部,就尝试获取锁(别忘了头结点是虚节点) if (p == head && tryAcquire(arg)) { // 获取锁成功,头指针移动到当前node setHead(node); p.next = null; // help GC failed = false; return interrupted; } // 说明p为头节点且当前没有获取到锁(可能是非公平锁被抢占了)或者是p不为头结点,这个时候就要判断当前node是否要被阻塞(被阻塞条件:前驱节点的waitStatus为-1),防止无限循环浪费资源。具体两个方法下面细细分析 if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } } 复制代码
注:setHead方法是把当前节点置为虚节点,但并没有修改waitStatus,因为它是一直需要用的数据。
// java.util.concurrent.locks.AbstractQueuedSynchronizer private void setHead(Node node) { head = node; node.thread = null; node.prev = null; } 复制代码
// java.util.concurrent.locks.AbstractQueuedSynchronizer // 靠前驱节点判断当前线程是否应该被阻塞 private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { // 获取头结点的节点状态 int ws = pred.waitStatus; // 说明头结点处于唤醒状态 if (ws == Node.SIGNAL) return true; // 通过枚举值我们知道waitStatus>0是取消状态 if (ws > 0) { do { // 循环向前查找取消节点,把取消节点从队列中剔除 node.prev = pred = pred.prev; } while (pred.waitStatus > 0); pred.next = node; } else { // 设置前任节点等待状态为SIGNAL compareAndSetWaitStatus(pred, ws, Node.SIGNAL); } return false; } 复制代码
parkAndCheckInterrupt主要用于挂起当前线程,阻塞调用栈,返回当前线程的中断状态。
// java.util.concurrent.locks.AbstractQueuedSynchronizer private final boolean parkAndCheckInterrupt() { LockSupport.park(this); return Thread.interrupted(); } 复制代码
上述方法的流程图如下:
从上图可以看出,跳出当前循环的条件是当“前置节点是头结点,且当前线程获取锁成功”。为了防止因死循环导致CPU资源被浪费,我们会判断前置节点的状态来决定是否要将当前线程挂起,具体挂起流程用流程图表示如下(shouldParkAfterFailedAcquire流程):
从队列中释放节点的疑虑打消了,那么又有新问题了:
acquireQueued方法中的Finally代码:
// java.util.concurrent.locks.AbstractQueuedSynchronizer final boolean acquireQueued(final Node node, int arg) { boolean failed = true; try { ... for (;;) { final Node p = node.predecessor(); if (p == head && tryAcquire(arg)) { ... failed = false; ... } ... } finally { if (failed) cancelAcquire(node); } } 复制代码
通过cancelAcquire方法,将Node的状态标记为CANCELLED。
接下来,我们逐行来分析这个方法的原理:
// java.util.concurrent.locks.AbstractQueuedSynchronizer private void cancelAcquire(Node node) { // 将无效节点过滤 if (node == null) return; // 设置该节点不关联任何线程,也就是虚节点 node.thread = null; Node pred = node.prev; // 通过前驱节点,跳过取消状态的node while (pred.waitStatus > 0) node.prev = pred = pred.prev; // 获取过滤后的前驱节点的后继节点 Node predNext = pred.next; // 把当前node的状态设置为CANCELLED node.waitStatus = Node.CANCELLED; // 如果当前节点是尾节点,将从后往前的第一个非取消状态的节点设置为尾节点 // 更新失败的话,则进入else,如果更新成功,将tail的后继节点设置为null if (node == tail && compareAndSetTail(node, pred)) { compareAndSetNext(pred, predNext, null); } else { int ws; // 如果当前节点不是head的后继节点,1:判断当前节点前驱节点的是否为SIGNAL,2:如果不是,则把前驱节点设置为SINGAL看是否成功 // 如果1和2中有一个为true,再判断当前节点的线程是否为null // 如果上述条件都满足,把当前节点的前驱节点的后继指针指向当前节点的后继节点 if (pred != head && ((ws = pred.waitStatus) == Node.SIGNAL || (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) && pred.thread != null) { Node next = node.next; if (next != null && next.waitStatus <= 0) compareAndSetNext(pred, predNext, next); } else { // 如果当前节点是head的后继节点,或者上述条件不满足,那就唤醒当前节点的后继节点 unparkSuccessor(node); } node.next = node; // help GC } } 复制代码
当前的流程:
根据上述第二条,我们来分析每一种情况的流程。
当前节点是尾节点。
当前节点是Head的后继节点。
当前节点不是Head的后继节点,也不是尾节点。
通过上面的流程,我们对于CANCELLED节点状态的产生和变化已经有了大致的了解,但是为什么所有的变化都是对Next指针进行了操作,而没有对Prev指针进行操作呢?什么情况下会对Prev指针进行操作?
(1)执行cancelAcquire的时候,当前节点的前置节点可能已经从队列中出去了(已经执行过Try代码块中的shouldParkAfterFailedAcquire方法了),如果此时修改Prev指针,有可能会导致Prev指向另一个已经移除队列的Node,因此这块变化Prev指针不安全。
(2)shouldParkAfterFailedAcquire方法中,会执行下面的代码,其实就是在处理Prev指针。shouldParkAfterFailedAcquire是获取锁失败的情况下才会执行,进入该方法后,说明共享资源已被获取,当前节点之前的节点都不会出现变化,因此这个时候变更Prev指针比较安全。
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
我们已经剖析了加锁过程中的基本流程,接下来再对解锁的基本流程进行分析。
由于ReentrantLock在解锁的时候,并不区分公平锁和非公平锁,所以我们直接看解锁的源码:
// java.util.concurrent.locks.ReentrantLock public void unlock() { sync.release(1); } 复制代码
可以看到,本质释放锁的地方,是通过框架来完成的。
// java.util.concurrent.locks.AbstractQueuedSynchronizer public final boolean release(int arg) { if (tryRelease(arg)) { Node h = head; if (h != null && h.waitStatus != 0) unparkSuccessor(h); return true; } return false; } 复制代码
在ReentrantLock里面的公平锁和非公平锁的父类Sync定义了可重入锁的释放锁机制。
// java.util.concurrent.locks.ReentrantLock.Sync // 方法返回当前锁是不是没有被线程持有 protected final boolean tryRelease(int releases) { // 减少可重入次数 int c = getState() - releases; // 当前线程不是持有锁的线程,抛出异常 if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); boolean free = false; // 如果持有线程全部释放,将当前独占锁所有线程设置为null,并更新state if (c == 0) { free = true; setExclusiveOwnerThread(null); } setState(c); return free; } 我们来解释下述源码:// java.util.concurrent.locks.AbstractQueuedSynchronizer public final boolean release(int arg) { // 上边自定义的tryRelease如果返回true,说明该锁没有被任何线程持有 if (tryRelease(arg)) { // 获取头结点 Node h = head; // 头结点不为空并且头结点的waitStatus不是初始化节点情况,解除线程挂起状态 if (h != null && h.waitStatus != 0) unparkSuccessor(h); return true; } return false; } 复制代码
这里的判断条件为什么是h != null && h.waitStatus != 0?
(1)h == null Head还没初始化。初始情况下,head == null,第一个节点入队,Head会被初始化一个虚拟节点。所以说,这里如果还没来得及入队,就会出现head == null 的情况。
(2)h != null && waitStatus == 0 表明后继节点对应的线程仍在运行中,不需要唤醒。
(3)h != null && waitStatus < 0 表明后继节点可能被阻塞了,需要唤醒。
在看一下unparkSuccessor方法:
// java.util.concurrent.locks.AbstractQueuedSynchronizer private void unparkSuccessor(Node node) { // 获取头结点waitStatus int ws = node.waitStatus; if (ws < 0) compareAndSetWaitStatus(node, ws, 0); // 获取当前节点的下一个节点 Node s = node.next; // 如果下个节点是null或者下个节点被cancelled,就找到队列最开始的非cancelled的节点 if (s == null || s.waitStatus > 0) { s = null; // 就从尾部节点开始找,到队首,找到队列第一个waitStatus<0的节点。 for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) s = t; } // 如果当前节点的下个节点不为空,而且状态<=0,就把当前节点unpark if (s != null) LockSupport.unpark(s.thread); } 复制代码
为什么要从后往前找第一个非Cancelled的节点呢?原因如下。
之前的addWaiter方法:
// java.util.concurrent.locks.AbstractQueuedSynchronizer private Node addWaiter(Node mode) { Node node = new Node(Thread.currentThread(), mode); // Try the fast path of enq; backup to full enq on failure Node pred = tail; if (pred != null) { node.prev = pred; if (compareAndSetTail(pred, node)) { pred.next = node; return node; } } enq(node); return node; } 复制代码
我们从这里可以看到,节点入队并不是原子操作,也就是说,node.prev = pred; compareAndSetTail(pred, node) 这两个地方可以看作Tail入队的原子操作,但是此时pred.next = node;还没执行,如果这个时候执行了unparkSuccessor方法,就没办法从前往后找了,所以需要从后往前找。还有一点原因,在产生CANCELLED状态节点的时候,先断开的是Next指针,Prev指针并未断开,因此也是必须要从后往前遍历才能够遍历完全部的Node。
综上所述,如果是从前往后找,由于极端情况下入队的非原子操作和CANCELLED节点产生过程中断开Next指针的操作,可能会导致无法遍历所有的节点。所以,唤醒对应的线程后,对应的线程就会继续往下执行。继续执行acquireQueued方法以后,中断如何处理?
唤醒后,会执行return Thread.interrupted();,这个函数返回的是当前执行线程的中断状态,并清除。
// java.util.concurrent.locks.AbstractQueuedSynchronizer private final boolean parkAndCheckInterrupt() { LockSupport.park(this); return Thread.interrupted(); } 复制代码
再回到acquireQueued代码,当parkAndCheckInterrupt返回True或者False的时候,interrupted的值不同,但都会执行下次循环。如果这个时候获取锁成功,就会把当前interrupted返回。
// java.util.concurrent.locks.AbstractQueuedSynchronizer final boolean acquireQueued(final Node node, int arg) { boolean failed = true; try { boolean interrupted = false; for (;;) { final Node p = node.predecessor(); if (p == head && tryAcquire(arg)) { setHead(node); p.next = null; // help GC failed = false; return interrupted; } if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } }复制代码
如果acquireQueued为True,就会执行selfInterrupt方法。
// java.util.concurrent.locks.AbstractQueuedSynchronizer static void selfInterrupt() { Thread.currentThread().interrupt(); } 复制代码
该方法其实是为了中断线程。但为什么获取了锁以后还要中断线程呢?这部分属于Java提供的协作式中断知识内容,感兴趣同学可以查阅一下。这里简单介绍一下:
(1) 当中断线程被唤醒时,并不知道被唤醒的原因,可能是当前线程在等待中被中断,也可能是释放了锁以后被唤醒。因此我们通过Thread.interrupted()方法检查中断标记(该方法返回了当前线程的中断状态,并将当前线程的中断标识设置为False),并记录下来,如果发现该线程被中断过,就再中断一次。
(2) 线程在等待资源的过程中被唤醒,唤醒后还是会不断地去尝试获取锁,直到抢到锁为止。也就是说,在整个流程中,并不响应中断,只是记录中断记录。最后抢到锁返回了,那么如果被中断过的话,就需要补充一次中断。
这里的处理方式主要是运用线程池中基本运作单元Worder中的runWorker,通过Thread.interrupted()进行额外的判断处理,感兴趣的同学可以看下ThreadPoolExecutor源码。
我们在1.3小节中提出了一些问题,现在来回答一下。
Q:某个线程获取锁失败的后续流程是什么呢?
A:存在某种排队等候机制,线程继续等待,仍然保留获取锁的可能,获取锁流程仍在继续。
Q:既然说到了排队等候机制,那么就一定会有某种队列形成,这样的队列是什么数据结构呢?
A:是CLH变体的FIFO双端队列。
Q:处于排队等候机制中的线程,什么时候可以有机会获取锁呢?
A:可以详细看下2.3.1.3小节。
Q:如果处于排队等候机制中的线程一直无法获取锁,需要一直等待么?还是有别的策略来解决这一问题?
A:线程所在节点的状态会变成取消状态,取消状态的节点会从队列中释放,具体可见2.3.2小节。
Q:Lock函数通过Acquire方法进行加锁,但是具体是如何加锁的呢?
A:AQS的Acquire会调用tryAcquire方法,tryAcquire由各个自定义同步器实现,通过tryAcquire完成加锁过程。
ReentrantLock的可重入性是AQS很好的应用之一,在了解完上述知识点以后,我们很容易得知ReentrantLock实现可重入的方法。在ReentrantLock里面,不管是公平锁还是非公平锁,都有一段逻辑。公平锁:
// java.util.concurrent.locks.ReentrantLock.FairSync#tryAcquire if (c == 0) { if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } 复制代码
非公平锁:
// java.util.concurrent.locks.ReentrantLock.Sync#nonfairTryAcquire if (c == 0) { if (compareAndSetState(0, acquires)){ setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) // overflow throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } 复制代码
从上面这两段都可以看到,有一个同步状态State来控制整体可重入的情况。State是Volatile修饰的,用于保证一定的可见性和有序性。
// java.util.concurrent.locks.AbstractQueuedSynchronizer private volatile int state;复制代码
接下来看State这个字段主要的过程:
(1) State初始化的时候为0,表示没有任何线程持有锁。
(2) 当有线程持有该锁时,值就会在原来的基础上+1,同一个线程多次获得锁是,就会多次+1,这里就是可重入的概念。
(3) 解锁也是对这个字段-1,一直到0,此线程对锁释放。
除了上边ReentrantLock的可重入性的应用,AQS作为并发编程的框架,为很多其他同步工具提供了良好的解决方案。下面列出了JUC中的几种同步工具,大体介绍一下AQS的应用场景:
了解AQS基本原理以后,按照上面所说的AQS知识点,自己实现一个同步工具。
public class LeeLock { private static class Sync extends AbstractQueuedSynchronizer { @Override protected boolean tryAcquire (int arg) { return compareAndSetState(0, 1); } @Override protected boolean tryRelease (int arg) { setState(0); return true; } @Override protected boolean isHeldExclusively () { return getState() == 1; } } private Sync sync = new Sync(); public void lock () { sync.acquire(1); } public void unlock () { sync.release(1); } } 复制代码
通过我们自己定义的Lock完成一定的同步功能。
public class LeeMain { static int count = 0; static LeeLock leeLock = new LeeLock(); public static void main (String[] args) throws InterruptedException { Runnable runnable = new Runnable() { @Override public void run () { try { leeLock.lock(); for (int i = 0; i < 10000; i++) { count++; } } catch (Exception e) { e.printStackTrace(); } finally { leeLock.unlock(); } } }; Thread thread1 = new Thread(runnable); Thread thread2 = new Thread(runnable); thread1.start(); thread2.start(); thread1.join(); thread2.join(); System.out.println(count); } }复制代码
上述代码每次运行结果都会是20000。通过简单的几行代码就能实现同步功能,这就是AQS的强大之处。
我们日常开发中使用并发的场景太多,但是对并发内部的基本框架原理了解的人却不多。由于篇幅原因,本文仅介绍了可重入锁ReentrantLock的原理和AQS原理,希望能够成为大家了解AQS和ReentrantLock等同步器的“敲门砖”。
更多精彩文章,关注公众号【ToBeTopJavaer】,更有如下数万元精品vip资源免费等你来拿!!!复制代码