转载

不敢相信?System.currentTimeMillis()存在性能问题

但实际上在并发调用或者特别频繁调用它的情况下(比如一个业务繁忙的接口,或者吞吐量大的需要取得时间戳的流式程序),其性能表现会令人大跌眼镜。

直接看代码

执行结果如下图。

不敢相信?System.currentTimeMillis()存在性能问题

可见,并发调用System.currentTimeMillis()一百次,耗费的时间是单线程调用一百次的250倍。如果单线程的调用频次增加(比如达到每毫秒数次的地步),也会观察到类似的情况。

实际上在极端情况下,System.currentTimeMillis()的耗时甚至会比创建一个简单的对象实例还要多,看官可以自行将上面线程中的语句换成new HashMap<>之类的试试看。

为什么会这样?

来到HotSpot源码的hotspot/src/os/linux/vm/os_linux.cpp文件中,有一个javaTimeMillis()方法,这就是System.currentTimeMillis()的native实现。

挖源码就到此为止,因为已经有国外大佬深入到了汇编的级别来探究

简单来讲就是:

  • 调用gettimeofday()需要从用户态切换到内核态;

  • gettimeofday()的表现受Linux系统的计时器(时钟源)影响,在HPET计时器下性能尤其差;

  • 系统只有一个全局时钟源,高并发或频繁访问会造成严重的争用。

HPET计时器性能较差的原因是会将所有对时间戳的请求串行执行。

TSC计时器性能较好,因为有专用的寄存器来保存时间戳。缺点是可能不稳定,因为它是纯硬件的计时器,频率可变(与处理器的CLK信号有关)。关于HPET和TSC的细节可以参见https://en.wikipedia.org/wiki/HighPrecisionEventTimer与https://en.wikipedia.org/wiki/TimeStamp_Counter。

另外,可以用以下的命令查看和修改时钟源。

如何解决这个问题?

最常见的办法是用单个调度线程来按毫秒更新时间戳,相当于维护一个全局缓存。其他线程取时间戳时相当于从内存取,不会再造成时钟资源的争用,代价就是牺牲了一些精确度。具体代码如下。

使用的时候,直接 CurrentTimeMillisClock.getInstance().now() 就可以了。

不过,在System.currentTimeMillis()的效率没有影响程序整体的效率时,就完全没有必要做这种优化,这只是为极端情况准备的。

本文来源:https://dwz.cn/M1NXgypa

原文  http://mp.weixin.qq.com/s?__biz=MzAxMTg2MjA2OA==&mid=2649847473&idx=2&sn=dfe91d2e2eccb684f1fd7f75ab3f726d
正文到此结束
Loading...