最近打算做网络相关的优化工作,不免需要重新熟悉一下网络框架,在Android领域网络框架的龙头老大非OkHttp莫属,借此机会对OkHttp的一些内部实现进行深入的剖析,同时这些问题也是面试时的常客,相信一定对你有帮助。
先来一发灵魂拷问四连击:
是不是既熟悉又陌生,实际上就是因为网络框架已经为我们实现了这些基本功能,所以很容易被我们忽略。为了完整的分析上面的问题,我们需要先复习一下OkHttp的基础原理:
OkHttp的内部实现通过一个责任链模式完成,将网络请求的各个阶段封装到各个链条中,实现了各层的解耦。
文内源码基于OkHttp最新版本4.2.2,从4.0.0版本开始,OkHttp使用全Kotlin语言开发,没上车的小伙伴要抓紧了,要不源码都快看不懂了 [捂脸],学习Kotlin可参考旧文 Kotlin学习系列文章Overview 。
我们从发起一次请求的调用开始,熟悉一下OkHttp执行的流程。
//创建OkHttpClient val client = OkHttpClient.Builder().build(); //创建请求 val request = Request.Builder() .url("https://wanandroid.com/wxarticle/list/408/1/json") .build() //同步任务开启新线程执行 Thread { //发起网络请求 val response = client.newCall(request).execute() if (!response.isSuccessful) throw IOException("Unexpected code $response") Log.d("okhttp_test", "response: ${response.body?.string()}") }.start() 复制代码
所以核心的代码逻辑是通过OkHttpClient的newCall方法创建了一个Call对象,并调用其execute方法;Call代表一个网络请求的接口,实现类只有一个RealCall。execute表示同步发起网络请求,与之对应还有一个enqueue方法,表示发起一个异步请求,因此同时需要传入callback。
我们来看RealCall的execute方法:
# RealCall override fun execute(): Response { ... //开始计时超时、发请求开始回调 transmitter.timeoutEnter() transmitter.callStart() try { client.dispatcher.executed(this)//第1步 return getResponseWithInterceptorChain()//第2步 } finally { client.dispatcher.finished(this)//第3步 } } 复制代码
把大象装冰箱,统共也只需要三步。
调用Dispatcher的execute方法,那Dispatcher是什么呢?从名字来看它是一个调度器,调度什么呢?就是所有网络请求,也就是RealCall对象。网络请求支持同步执行和异步执行,异步执行就需要线程池、并发阈值这些东西,如果超过阈值需要将超过的部分存储起来,这样一分析Dispatcher的功能就可以总结如下:
OkHttp设置了默认的最大并发请求量 maxRequests = 64 和单个host支持的最大并发量 maxRequestsPerHost = 5。
同时用三个双端队列存储这些请求:
# Dispatcher //异步任务等待队列 private val readyAsyncCalls = ArrayDeque<AsyncCall>() //异步任务队列 private val runningAsyncCalls = ArrayDeque<AsyncCall>() //同步任务队列 private val runningSyncCalls = ArrayDeque<RealCall>() 复制代码
为什么要使用双端队列?很简单因为网络请求执行顺序跟排队一样,讲究先来后到,新来的请求放队尾,执行请求从对头部取。
说到这LinkedList表示不服,我们知道LinkedList同样也实现了Deque接口,内部是用链表实现的双端队列,那为什么不用LinkedList呢?
实际上这与readyAsyncCalls向runningAsyncCalls转换有关,当执行完一个请求或调用enqueue方法入队新的请求时,会对readyAsyncCalls进行一次遍历,将那些符合条件的等待请求转移到runningAsyncCalls队列中并交给线程池执行。尽管二者都能完成这项任务,但是由于链表的数据结构致使元素离散的分布在内存的各个位置,CPU缓存无法带来太多的便利,另外在垃圾回收时,使用数组结构的效率要优于链表。
回到主题,上述的核心逻辑在promoteAndExecute方法中:
#Dispatcher private fun promoteAndExecute(): Boolean { val executableCalls = mutableListOf<AsyncCall>() val isRunning: Boolean synchronized(this) { val i = readyAsyncCalls.iterator() //遍历readyAsyncCalls while (i.hasNext()) { val asyncCall = i.next() //阈值校验 if (runningAsyncCalls.size >= this.maxRequests) break // Max capacity. if (asyncCall.callsPerHost().get() >= this.maxRequestsPerHost) continue // Host max capacity. //符合条件 从readyAsyncCalls列表中删除 i.remove() //per host 计数加1 asyncCall.callsPerHost().incrementAndGet() executableCalls.add(asyncCall) //移入runningAsyncCalls列表 runningAsyncCalls.add(asyncCall) } isRunning = runningCallsCount() > 0 } for (i in 0 until executableCalls.size) { val asyncCall = executableCalls[i] //提交任务到线程池 asyncCall.executeOn(executorService) } return isRunning } 复制代码
这个方法在enqueue和finish方法中都会调用,即当有新的请求入队和当前请求完成后,需要重新提交一遍任务到线程池。
讲了半天线程池,那OkHttp内部到底用的什么线程池呢?
#Dispatcher @get:JvmName("executorService") val executorService: ExecutorService get() { if (executorServiceOrNull == null) { executorServiceOrNull = ThreadPoolExecutor(0, Int.MAX_VALUE, 60, TimeUnit.SECONDS, SynchronousQueue(), threadFactory("OkHttp Dispatcher", false)) } return executorServiceOrNull!! } 复制代码
这不是一个newCachedThreadPool吗?没错,除了最后一个threadFactory参数之外与newCachedThreadPool一毛一样,只不过是设置了线程名字而已,用于排查问题。
阻塞队列用的SynchronousQueue,它的特点是不存储数据,当添加一个元素时,必须等待一个消费线程取出它,否则一直阻塞,如果当前有空闲线程则直接在这个空闲线程执行,如果没有则新启动一个线程执行任务。通常用于需要快速响应任务的场景,在网络请求要求低延迟的大背景下比较合适,详见旧文 Java线程池工作原理浅析 。
继续回到主线,第二步比较复杂我们先跳过,来看第三步。
调用Dispatcher的finished方法
//异步任务执行结束 internal fun finished(call: AsyncCall) { call.callsPerHost().decrementAndGet() finished(runningAsyncCalls, call) } //同步任务执行结束 internal fun finished(call: RealCall) { finished(runningSyncCalls, call) } //同步异步任务 统一汇总到这里 private fun <T> finished(calls: Deque<T>, call: T) { val idleCallback: Runnable? synchronized(this) { //将完成的任务从队列中删除 if (!calls.remove(call)) throw AssertionError("Call wasn't in-flight!") idleCallback = this.idleCallback } //这个方法在第一步中已经分析,用于将等待队列中的请求移入异步队列,并交由线程池执行。 val isRunning = promoteAndExecute() //如果没有请求需要执行,回调闲置callback if (!isRunning && idleCallback != null) { idleCallback.run() } } 复制代码
现在我们回过头来看最复杂的第二步,调用getResponseWithInterceptorChain方法,这也是整个OkHttp实现责任链模式的核心。
#RealCall fun getResponseWithInterceptorChain(): Response { //创建拦截器数组 val interceptors = mutableListOf<Interceptor>() //添加应用拦截器 interceptors += client.interceptors //添加重试和重定向拦截器 interceptors += RetryAndFollowUpInterceptor(client) //添加桥接拦截器 interceptors += BridgeInterceptor(client.cookieJar) //添加缓存拦截器 interceptors += CacheInterceptor(client.cache) //添加连接拦截器 interceptors += ConnectInterceptor if (!forWebSocket) { //添加网络拦截器 interceptors += client.networkInterceptors } //添加请求拦截器 interceptors += CallServerInterceptor(forWebSocket) //创建责任链 val chain = RealInterceptorChain(interceptors, transmitter, null, 0, originalRequest, this, client.connectTimeoutMillis, client.readTimeoutMillis, client.writeTimeoutMillis) ... try { //启动责任链 val response = chain.proceed(originalRequest) ... return response } catch (e: IOException) { ... } } 复制代码
我们先不关心每个拦截器具体做了什么,主流程最终走到 chain.proceed(originalRequest)
。我们看一下这个procceed方法:
# RealInterceptorChain override fun proceed(request: Request): Response { return proceed(request, transmitter, exchange) } @Throws(IOException::class) fun proceed(request: Request, transmitter: Transmitter, exchange: Exchange?): Response { if (index >= interceptors.size) throw AssertionError() // 统计当前拦截器调用proceed方法的次数 calls++ // exchage是对请求流的封装,在执行ConnectInterceptor前为空,连接和流已经建立但此时此连接不再支持当前url // 说明之前的网络拦截器对url或端口进行了修改,这是不允许的!! check(this.exchange == null || this.exchange.connection()!!.supportsUrl(request.url)) { "network interceptor ${interceptors[index - 1]} must retain the same host and port" } // 这里是对拦截器调用proceed方法的限制,在ConnectInterceptor及其之后的拦截器最多只能调用一次proceed!! check(this.exchange == null || calls <= 1) { "network interceptor ${interceptors[index - 1]} must call proceed() exactly once" } // 创建下一层责任链 注意index + 1 val next = RealInterceptorChain(interceptors, transmitter, exchange, index + 1, request, call, connectTimeout, readTimeout, writeTimeout) //取出下标为index的拦截器,并调用其intercept方法,将新建的链传入。 val interceptor = interceptors[index] val response = interceptor.intercept(next) // 保证在ConnectInterceptor及其之后的拦截器至少调用一次proceed!! check(exchange == null || index + 1 >= interceptors.size || next.calls == 1) { "network interceptor $interceptor must call proceed() exactly once" } return response } 复制代码
代码中的注释已经写得比较清楚了,总结起来就是创建下一级责任链,然后取出当前拦截器,调用其intercept方法并传入创建的责任链。++ 为保证责任链能依次进行下去,必须保证除最后一个拦截器(CallServerInterceptor)外,其他所有拦截器intercept方法内部必须调用一次chain.proceed()方法 ++,如此一来整个责任链就运行起来了。
比如ConnectInterceptor源码中:
# ConnectInterceptor 这里使用单例 object ConnectInterceptor : Interceptor { @Throws(IOException::class) override fun intercept(chain: Interceptor.Chain): Response { val realChain = chain as RealInterceptorChain val request = realChain.request() val transmitter = realChain.transmitter() val doExtensiveHealthChecks = request.method != "GET" //创建连接和流 val exchange = transmitter.newExchange(chain, doExtensiveHealthChecks) //执行下一级责任链 return realChain.proceed(request, transmitter, exchange) } } 复制代码
除此之外在责任链不同节点对于proceed的调用次数有不同的限制,ConnectInterceptor拦截器及其之后的拦截器能且只能调用一次,因为网络握手、连接、发送请求的工作发生在这些拦截器内,表示正式发出了一次网络请求;而在这之前的拦截器可以执行多次proceed,比如错误重试。
经过责任链一级一级的递推下去,最终会执行到CallServerInterceptor的intercept方法,此方法会将网络响应的结果封装成一个Response对象并return。之后沿着责任链一级一级的回溯,最终就回到getResponseWithInterceptorChain方法的返回。
现在我们需要先大致总结一下责任链的各个节点拦截器的作用:
拦截器 | 作用 |
---|---|
应用拦截器 | 拿到的是原始请求,可以添加一些自定义header、通用参数、参数加密、网关接入等等。 |
RetryAndFollowUpInterceptor | 处理错误重试和重定向 |
BridgeInterceptor | 应用层和网络层的桥接拦截器,主要工作是为请求添加cookie、添加固定的header,比如Host、Content-Length、Content-Type、User-Agent等等,然后保存响应结果的cookie,如果响应使用gzip压缩过,则还需要进行解压。 |
CacheInterceptor | 缓存拦截器,如果命中缓存则不会发起网络请求。 |
ConnectInterceptor | 连接拦截器,内部会维护一个连接池,负责连接复用、创建连接(三次握手等等)、释放连接以及创建连接上的socket流。 |
networkInterceptors(网络拦截器) | 用户自定义拦截器,通常用于监控网络层的数据传输。 |
CallServerInterceptor | 请求拦截器,在前置准备工作完成后,真正发起了网络请求。 |
至此,OkHttp的核心执行流程就结束了,是不是有种豁然开朗的感觉?现在我们终于可以回答开篇的问题:
二者通常的叫法为应用拦截器和网络拦截器,从整个责任链路来看,应用拦截器是最先执行的拦截器,也就是用户自己设置request属性后的原始请求,而网络拦截器位于ConnectInterceptor和CallServerInterceptor之间,此时网络链路已经准备好,只等待发送请求数据。
首先,应用拦截器在RetryAndFollowUpInterceptor和CacheInterceptor之前,所以一旦发生错误重试或者网络重定向,网络拦截器可能执行多次,因为相当于进行了二次请求,但是应用拦截器永远只会触发一次。另外如果在CacheInterceptor中命中了缓存就不需要走网络请求了,因此会存在短路网络拦截器的情况。
其次,如上文提到除了CallServerInterceptor,每个拦截器都应该至少调用一次realChain.proceed方法。实际上在应用拦截器这层可以多次调用proceed方法(本地异常重试)或者不调用proceed方法(中断),但是网络拦截器这层连接已经准备好,可且仅可调用一次proceed方法。
最后,从使用场景看,应用拦截器因为只会调用一次,通常用于统计客户端的网络请求发起情况;而网络拦截器一次调用代表了一定会发起一次网络通信,因此通常可用于统计网络链路上传输的数据。
这里的缓存是指基于Http网络协议的数据缓存策略,侧重点在客户端缓存,所以我们要先来复习一下Http协议如何根据请求和响应头来标识缓存的可用性。
提到缓存,就必须要聊聊缓存的有效性、有效期。
在HTTP 1.0时代,响应使用Expires头标识缓存的有效期,其值是一个绝对时间,比如Expires:Thu,31 Dec 2020 23:59:59 GMT。当客户端再次发出网络请求时可比较当前时间 和上次响应的expires时间进行比较,来决定是使用缓存还是发起新的请求。
使用Expires头最大的问题是它依赖客户端的本地时间,如果用户自己修改了本地时间,就会导致无法准确的判断缓存是否过期。
因此,从HTTP 1.1 开始使用Cache-Control头表示缓存状态,它的优先级高于Expires,常见的取值为下面的一个或多个。
在上述缓存头规约基础之上,强制缓存是指网络请求响应header标识了Expires或Cache-Control带了max-age信息,而此时客户端计算缓存并未过期,则可以直接使用本地缓存内容,而不用真正的发起一次网络请求。
强制缓存最大的问题是,一旦服务端资源有更新,直到缓存时间截止前,客户端无法获取到最新的资源(除非请求时手动添加no-store头),另外大部分情况下服务器的资源无法直接确定缓存失效时间,所以使用对比缓存更灵活一些。
使用 Last-Modify / If-Modify-Since 头实现协商缓存,具体方法是服务端响应头添加Last-Modify头标识资源的最后修改时间,单位为秒,当客户端再次发起请求时添加If-Modify-Since头并赋值为上次请求拿到的Last-Modify头的值。
服务端收到请求后自行判断缓存资源是否仍然有效,如果有效则返回状态码304同时body体为空,否则下发最新的资源数据。客户端如果发现状态码是304,则取出本地的缓存数据作为响应。
使用这套方案有一个问题,那就是资源文件使用最后修改时间有一定的局限性:
因此,HTTP 还提供了另外一组头信息来处理缓存,ETag/If-None-Match。流程与Last-Modify一样,只是把服务端响应的头变成Last-Modify,客户端发出的头变成If-None-Match。ETag是资源的唯一标识符 ,服务端资源变化一定会导致ETag变化。具体的生成方式有服务端控制,场景的影响因素包括,文件最终修改时间、文件大小、文件编号等等。
上面讲了这么多,实际上OKHttp就是将上述流程用代码实现了一下,即:
OKHttp内部使用Okio来实现缓存文件的读写。
缓存文件分为CleanFiles和DirtyFiles,CleanFiles用于读,DirtyFiles用于写,他们都是数组,长度为2,表示两个文件,即缓存的请求头和请求体;同时记录了缓存的操作日志,记录在journalFile中。
开启缓存需要在OkHttpClient创建时设置一个Cache对象,并指定缓存目录和缓存大小,缓存系统内部使用LRU作为缓存的淘汰算法。
## Cache.kt class Cache internal constructor( directory: File, maxSize: Long, fileSystem: FileSystem ): Closeable, Flushable 复制代码
OkHttp早期的版本有个一个InternalCache接口,支持自定义实现缓存,但到了4.x的版本后删减了InternalCache,Cache类又为final的,相当于关闭了扩展功能。
具体源码实现都在CacheInterceptor类中,大家可以自行查阅。
通过OkHttpClient设置缓存是全局状态的,如果我们想对某个特定的request使用或禁用缓存,可以通过CacheControl相关的API实现:
//禁用缓存 Request request = new Request.Builder() .cacheControl(new CacheControl.Builder().noCache().build()) .url("http://publicobject.com/helloworld.txt") .build(); 复制代码
最后需要注意的一点是,OKHttp默认只支持get请求的缓存。
# okhttp3.Cache.java @Nullable CacheRequest put(Response response) { String requestMethod = response.request().method(); ... //缓存仅支持GET请求 if (!requestMethod.equals("GET")) { // Don't cache non-GET responses. We're technically allowed to cache // HEAD requests and some POST requests, but the complexity of doing // so is high and the benefit is low. return null; } //对于vary头的值为*的情况,统一不缓存 if (HttpHeaders.hasVaryAll(response)) { return null; } ... } 复制代码
这是当网络请求响应后,准备进行缓存时的逻辑代码,当返回null时表示不缓存。从代码注释中不难看出,我们从技术上可以缓存method为HEAD和部分POST请求,但实现起来的复杂性很高而收益甚微。这本质上是由各个method的使用场景决定的。
我们先来看看常见的method类型及其用途。
可以看到对于标准的RETful请求,GET就是用来获取数据,最适合使用缓存,而对于数据的其他操作缓存意义不大或者根本不需要缓存。
也是基于此在仅支持GET请求的条件下,OKHTTP使用request URL作为缓存的key(当然还会经过一系列摘要算法)。
最后上面代码中贴到,如果请求头中包含 vary:*
这样的头信息也不会被缓存。vary头用于提高多端请求时的缓存命中率,比如两个客户端,一个支持gzip压缩而另一个不支持,二者的请求URL都是一致的,但Accept-Encoding不同,这很容易导致缓存环错乱,我们可以声明 vary:Accept-Encoding
防止这种情况发生。
而包含 vary:*
头信息,标识着此请求是唯一的,不应被缓存,除非有意为之,一般不会这样做来牺牲缓存性能。
写到这发现已经太长了,为了较好的阅读体验,后续连接的复用和网络监控部分将单独成文,敬请关注。