转载

Java实现系统限流

在微服务系统中,缓存、限流、熔断是保证系统高可用的三板斧,今天我们就来聊聊限流。

限流是保障系统高可用的方式之一,当然啦也是大厂高频面试题,如果阿里的面试官问一句:“如何实现每秒钟1K个请求的限流?”,你要是分分钟给他写上几种限流方案,那岂不香哉,哈哈:smirk:! 话不多说,我来列几种常用限流实现方式。

Guava RateLimiter

Guava是Java领域很优秀的开源项目,包含了日常开发常用的集合、String、缓存等, 其中RateLimiter是常用限流工具。
RateLimiter是基于令牌桶算法实现的,如果每秒10个令牌,内部实现,会每100ms生产1个令牌。

使用Guava RateLimiter

  1. 引入pom依赖:

    <dependency>
      <groupId>com.google.guava</groupId>
      <artifactId>guava</artifactId>
      <version>23.0</version>
    </dependency>
    复制代码
  2. 代码:

    public class GuavaRateLimiterTest {
        //比如每秒生产10个令牌,相当于每100ms生产1个令牌
        private RateLimiter rateLimiter = RateLimiter.create(10);
    
        /**
         * 模拟执行业务方法
         */
        public void exeBiz() {
            if (rateLimiter.tryAcquire(1)) {
                try {
                    Thread.sleep(500);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println("线程" + Thread.currentThread().getName() + ":执行业务逻辑");
            } else {
                System.out.println("线程" + Thread.currentThread().getName() + ":被限流");
            }
        }
    
        public static void main(String[] args) throws InterruptedException {
            GuavaRateLimiterTest limiterTest = new GuavaRateLimiterTest();
            Thread.sleep(500);//等待500ms,让limiter生产一些令牌
    
            //模拟瞬间生产100个线程请求
            for (int i = 0; i < 100; i++) {
                new Thread(limiterTest::exeBiz).start();
            }
        }
    }
    复制代码

滑窗计数

打个比方,某接口每秒允许100个请求,设置一个滑窗,窗口中有10个格子,每个格子占100ms,每100ms移动一次。滑动窗口的格子划分的越多,滑动窗口的滚动就越平滑,限流的统计就会越精确。

Java实现系统限流

代码:

/**
 * 滑窗计数器
 */
public class SliderWindowRateLimiter implements Runnable {
    //每秒允许的最大访问数
    private final long maxVisitPerSecond;
    //将每秒时间划分N个块
    private final int block;
    //每个块存储的数量
    private final AtomicLong[] countPerBlock;
    //滑动窗口划到了哪个块儿,可以理解为滑动窗口的起始下标位置
    private volatile int index;
    //目前总的数量
    private AtomicLong allCount;

    /**
     * 构造函数
     *
     * @param block,每秒钟划分N个窗口
     * @param maxVisitPerSecond 每秒最大访问数量
     */
    public SliderWindowRateLimiter(int block, long maxVisitPerSecond) {
        this.block = block;
        this.maxVisitPerSecond = maxVisitPerSecond;
        countPerBlock = new AtomicLong[block];
        for (int i = 0; i < block; i++) {
            countPerBlock[i] = new AtomicLong();
        }
        allCount = new AtomicLong(0);
    }

    /**
     * 判断是否超过最大允许数量
     *
     * @return
     */
    public boolean isOverLimit() {
        return currentQPS() > maxVisitPerSecond;
    }

    /**
     * 获取目前总的访问数
     *
     * @return
     */
    public long currentQPS() {
        return allCount.get();
    }

    /**
     * 请求访问进来,判断是否可以执行业务逻辑
     */
    public void visit() {
        countPerBlock[index].incrementAndGet();
        allCount.incrementAndGet();

        if (isOverLimit()) {
            System.out.println(Thread.currentThread().getName() + "被限流" + ",currentQPS:" + currentQPS() + ",index:" + index);
        } else {
            System.out.println(Thread.currentThread().getName() + "执行业务逻辑" + ",currentQPS:" + currentQPS() + ",index:" + index);
        }
    }

    /**
     * 定时执行器,
     * 每N毫秒滑块移动一次,然后再设置下新滑块的初始化数字0,然后新的请求会落到新的滑块上
     * 同时总数减掉新滑块上的数字,并且重置新的滑块上的数量
     */
    @Override
    public void run() {
        index = (index + 1) % block;
        long val = countPerBlock[index].getAndSet(0);
        allCount.addAndGet(-val);
    }

    public static void main(String[] args) {
        SliderWindowRateLimiter sliderWindowRateLimiter = new SliderWindowRateLimiter(10, 100);

        //固定的速率移动滑块
        ScheduledExecutorService scheduledExecutorService = Executors.newSingleThreadScheduledExecutor();
        scheduledExecutorService.scheduleAtFixedRate(sliderWindowRateLimiter, 100, 100, TimeUnit.MILLISECONDS);

        //模拟不同速度的请求
        new Thread(() -> {
            while (true) {
                sliderWindowRateLimiter.visit();
                try {
                    Thread.sleep(10);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }).start();

        //模拟不同速度的请求
        new Thread(() -> {
            while (true) {
                sliderWindowRateLimiter.visit();
                try {
                    Thread.sleep(50);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }).start();
    }
}
复制代码

信号量

利用Semaphore,每隔固定速率,释放Semaphore的资源。线程获取到资源,则执行业务代码。

代码:

public class SemaphoreOne {
    private static Semaphore semaphore = new Semaphore(10);

    public static void bizMethod() throws InterruptedException {
        if (!semaphore.tryAcquire()) {
            System.out.println(Thread.currentThread().getName() + "被拒绝");
            return;
        }

        System.out.println(Thread.currentThread().getName() + "执行业务逻辑");
        Thread.sleep(500);//模拟处理业务逻辑需要1秒
        semaphore.release();
    }

    public static void main(String[] args) {

        Timer timer = new Timer();
        timer.scheduleAtFixedRate(new TimerTask() {
            @Override
            public void run() {
                semaphore.release(10);
                System.out.println("释放所有锁");
            }
        }, 1000, 1000);

        for (int i = 0; i < 10000; i++) {
            try {
                Thread.sleep(10);//模拟每隔10ms就有1个请求进来
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            new Thread(() -> {
                try {
                    SemaphoreOne.bizMethod();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }).start();
        }
    }
}
复制代码

令牌桶

令牌桶算法:一个存放固定容量令牌的桶,按照固定速率往桶里添加令牌,如有剩余容量则添加,没有则放弃。如果有请求进来,则需要先从桶里获取令牌,当桶里没有令牌可取时,则拒绝任务。

令牌桶的优点是:可以改变添加令牌的速率,一旦提高速率,则可以处理突发流量。

Java实现系统限流

代码:

public class TokenBucket {
    /**
     * 定义的桶
     */
    public class Bucket {
        //容量
        int capacity;
        //速率,每秒放多少
        int rateCount;
        //目前token个数
        AtomicInteger curCount = new AtomicInteger(0);

        public Bucket(int capacity, int rateCount) {
            this.capacity = capacity;
            this.rateCount = rateCount;
        }

        public void put() {
            if (curCount.get() < capacity) {
                System.out.println("目前数量==" + curCount.get() + ", 我还可以继续放");
                curCount.addAndGet(rateCount);
            }
        }

        public boolean get() {
            if (curCount.get() >= 1) {
                curCount.decrementAndGet();
                return true;
            }
            return false;
        }
    }

    @Test
    public void testTokenBucket() throws InterruptedException {

        Bucket bucket = new Bucket(5, 2);

        //固定线程,固定的速率往桶里放数据,比如每秒N个
        ScheduledThreadPoolExecutor scheduledCheck = new ScheduledThreadPoolExecutor(1);
        scheduledCheck.scheduleAtFixedRate(() -> {
            bucket.put();
        }, 0, 1, TimeUnit.SECONDS);

        //先等待一会儿,让桶里放点token
        Thread.sleep(6000);

        //模拟瞬间10个线程进来拿token
        for (int i = 0; i < 10; i++) {
            new Thread(() -> {
                if (bucket.get()) {
                    System.out.println(Thread.currentThread() + "获取到了资源");
                } else {
                    System.out.println(Thread.currentThread() + "被拒绝");
                }
            }).start();
        }

        //等待,往桶里放token
        Thread.sleep(3000);

        //继续瞬间10个线程进来拿token
        for (int i = 0; i < 10; i++) {
            new Thread(() -> {
                if (bucket.get()) {
                    System.out.println(Thread.currentThread() + "获取到了资源");
                } else {
                    System.out.println(Thread.currentThread() + "被拒绝");
                }
            }).start();
        }
    }
}
复制代码

原文  https://juejin.im/post/5e6d7c2fe51d4526c80eb7bc
正文到此结束
Loading...