转载

一文看懂HashMap

总所周知HashMap是面试中经常问到的一个知识点,也是判断一个候选人基础是否扎实的标准之一,因为通过HashMap可以引出很多知识点,比如数据结构(数组、链表、红黑树)、equals和hashcode方法,除此之外还可以引出线程安全的问题,HashMap是我在初学阶段学到的设计的最为巧妙的集合,里面有很多细节以及优化技巧都值得我们深入学习,活不多说先看看相关的面试题:

  • HashMap的默认大小、负载因子以及扩容倍数是多少
  • HashMap底层数据结构
  • HashMap是怎么处理hash冲突的
  • HashMap如何计算一个key的hash值
  • HashMap数组长度为什么是2的幂次方
  • HashMap扩容、查找过程

如果上面的都能回答出来的话你就不需要看这篇文章了,那么开始进入正文。

HashMp底层数据结构

数组+链表+红黑树

一文看懂HashMap

在看源码之前我们需要先看看一些基本属性

//默认初始容量为16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; 
//默认负载因子为0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//Hash数组(在resize()中初始化)
transient Node<K,V>[] table;
//元素个数
transient int size;
//容量阈值(元素个数超过该值会自动扩容)  
int threshold;

table数组里面存放的是Node对象,Node是HashMap的一个内部类,用来表示一个key-value,源码如下:

static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;

    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
    
    public final K getKey()        { return key; }
    public final V getValue()      { return value; }
    public final String toString() { return key + "=" + value; }
    public final int hashCode() {
        return Objects.hashCode(key) ^ Objects.hashCode(value);//^表示相同返回0,不同返回1
        //Objects.hashCode(o)————>return o != null ? o.hashCode() : 0;
    }

    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }

    public final boolean equals(Object o) {
        if (o == this)
            return true;
        if (o instanceof Map.Entry) {
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            //Objects.equals(1,b)————> return (a == b) || (a != null && a.equals(b));
            if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue()))
                return true;
        }
        return false;
    }
}

总结

  • 默认初始容量为 16 ,默认负载因子为 0.75
  • threshold = 数组长度 * loadFactor ,当元素个数超过 threshold(容量阈值) 时,HashMap会进行扩容操作
  • table数组中存放指向链表的引用

这里需要注意的一点是 table数组并不是在构造方法里面初始化的,它是在resize(扩容)方法里进行初始化的

HashMap数组长度永远为2的幂次方

总所周知,HashMap数组长度永远为2的幂次方(指的是table数组的大小),那你有想过为什么吗?

首先我们需要知道HashMap是通过一个名为 tableSizeFor 的方法来确保HashMap数组长度永远为2的幂次方的,源码如下:

/*找到大于或等于 cap 的最小2的幂,用来做容量阈值*/
static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

tableSizeFor的功能(不考虑大于最大容量的情况)是返回大于等于输入参数且最近的2的整数次幂的数。比如10,则返回16。

该算法让最高位的1后面的位全变为1。最后再让结果n+1,即得到了2的整数次幂的值了。

cap-1 再赋值给n的目的是另找到的目标值大于或等于原值。例如二进制1000,十进制数值为8。如果不对它减1而直接操作,将得到答案10000,即16。显然不是结果。减1后二进制为111,再进行操作则会得到原来的数值1000,即8。通过一系列位运算大大提高效率。

那在什么地方会用到 tableSizeFor 方法呢?

答案就是在构造方法里面调用该方法来设置threshold,也就是容量阈值。

这里你可能又会有一个疑问:为什么要设置为threshold呢?

因为在扩容方法里第一次初始化table数组时会将threshold设置数组的长度,后续在讲扩容方法时再介绍。

/*传入初始容量和负载因子*/
public HashMap(int initialCapacity, float loadFactor) {
    
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +loadFactor);
        
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}

那么为什么要把数组长度设计为2的幂次方呢?

我个人觉得这样设计有以下几个好处:

1、当数组长度为2的幂次方时,可以使用位运算来计算元素在数组中的下标

HashMap是通过 index=hash&(table.length-1) 这条公式来计算元素在table数组中存放的下标,就是把元素的hash值和数组长度减1的值做一个与运算,即可求出该元素在数组中的下标,这条公式其实等价于 hash%length ,也就是对数组长度求模取余,只不过 只有当数组长度为2的幂次方时,hash&(length-1)才等价于hash%length ,使用位运算可以提高效率。

2、 增加hash值的随机性,减少hash冲突

如果 length 为 2 的幂次方,则 length-1 转化为二进制必定是 11111……的形式,这样的话可以使所有位置都能和元素hash值做与运算,如果是如果 length 不是2的次幂,比如length为15,则length-1为14,对应的二进制为1110,在和hash 做与运算时,最后一位永远都为0 ,浪费空间。

扩容

HashMap每次扩容都是建立一个新的table数组,长度和容量阈值都变为原来的两倍,然后把原数组元素重新映射到新数组上,具体步骤如下:

  1. 首先会判断table数组长度,如果大于0说明已被初始化过,那么 按当前table数组长度的2倍进行扩容,阈值也变为原来的2倍
  2. 若table数组未被初始化过,且threshold(阈值)大于0说明调用了 HashMap(initialCapacity, loadFactor) 构造方法,那么就把数组大小设为threshold
  3. 若table数组未被初始化,且threshold为0说明调用 HashMap() 构造方法,那么就把数组大小设为 16 ,threshold设为 16*0.75
  4. 接着需要判断如果不是第一次初始化,那么扩容之后,要重新计算键值对的位置,并把它们移动到合适的位置上去,如果节点是红黑树类型的话则需要进行红黑树的拆分。

这里有一个需要注意的点就是在JDK1.8 HashMap扩容阶段重新映射元素时不需要像1.7版本那样重新去一个个计算元素的hash值,而是 通过 hash & oldCap 的值来判断,若为0则索引位置不变,不为0则新索引=原索引+旧数组长度 ,为什么呢?具体原因如下:

因为我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap

一文看懂HashMap

这点其实也可以看做长度为2的幂次方的一个好处,也是HashMap 1.7和1.8之间的一个区别,具体源码如下:

/*扩容*/
final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    
    //1、若oldCap>0 说明hash数组table已被初始化
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }//按当前table数组长度的2倍进行扩容,阈值也变为原来的2倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; 
    }//2、若数组未被初始化,而threshold>0说明调用了HashMap(initialCapacity)和HashMap(initialCapacity, loadFactor)构造器
    else if (oldThr > 0)
        newCap = oldThr;//新容量设为数组阈值
    else { //3、若table数组未被初始化,且threshold为0说明调用HashMap()构造方法             
        newCap = DEFAULT_INITIAL_CAPACITY;//默认为16
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);//16*0.75
    }
    
    //若计算过程中,阈值溢出归零,则按阈值公式重新计算
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    //创建新的hash数组,hash数组的初始化也是在这里完成的
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    //如果旧的hash数组不为空,则遍历旧数组并映射到新的hash数组
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;//GC
                if (e.next == null)//如果只链接一个节点,重新计算并放入新数组
                    newTab[e.hash & (newCap - 1)] = e;
                //若是红黑树,则需要进行拆分    
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { 
                    //rehash————>重新映射到新数组
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        /*注意这里使用的是:e.hash & oldCap,若为0则索引位置不变,不为0则新索引=原索引+旧数组长度*/
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

在扩容方法里面还涉及到有关红黑树的几个知识点:

链表树化

指的就是把链表转换成红黑树,树化需要满足以下两个条件:

  • 链表长度大于等于8
  • table数组长度大于等于64

为什么table数组容量大于等于64才树化?

因为当table数组容量比较小时,键值对节点 hash 的碰撞率可能会比较高,进而导致链表长度较长。这个时候应该优先扩容,而不是立马树化。

红黑树拆分

拆分就是指扩容后对元素重新映射时,红黑树可能会被拆分成两条链表。

由于篇幅有限,有关红黑树这里就展开了。

查找

HashMap的查找是非常快的,要查找一个元素首先得知道key的hash值,在HashMap中并不是直接通过key的hashcode方法获取哈希值,而是通过内部自定义的 hash 方法计算哈希值,我们来看看其实现:

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

(h = key.hashCode()) ^ (h >>> 16) 是为了让高位数据与低位数据进行异或,变相的让高位数据参与到计算中,int有 32 位,右移16位就能让低16位和高16位进行异或,也是为了增加hash值的随机性。

知道如何计算hash值后我们来看看 get 方法

public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;//hash(key)不等于key.hashCode
}

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; //指向hash数组
    Node<K,V> first, e; //first指向hash数组链接的第一个节点,e指向下一个节点
    int n;//hash数组长度
    K k;
    /*(n - 1) & hash ————>根据hash值计算出在数组中的索引index(相当于对数组长度取模,这里用位运算进行了优化)*/
    if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) {
        //基本类型用==比较,其它用euqals比较
        if (first.hash == hash && ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        if ((e = first.next) != null) {
            //如果first是TreeNode类型,则调用红黑树查找方法
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {//向后遍历
                if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

这里要注意的一点就是在HashMap中用 (n - 1) & hash 计算key所对应的索引index(相当于对数组长度取模,这里用位运算进行了优化),这点在上面已经说过了,就不再废话了。

插入

我们先来看看插入元素的步骤:

  1. 当table数组为空时,通过扩容的方式初始化table
  2. 通过计算键的hash值求出下标后,若该位置上没有元素(没有发生hash冲突),则新建Node节点插入
  3. 若发生了hash冲突,遍历链表查找要插入的key是否已经存在,存在的话根据条件判断是否用新值替换旧值
  4. 如果不存在,则将元素插入链表尾部,并根据链表长度决定是否将链表转为红黑树
  5. 判断键值对数量是否大于阈值,大于的话则进行扩容操作

先看完上面的流程,再来看源码会简单很多,源码如下:

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {
    Node<K,V>[] tab;//指向hash数组
    Node<K,V> p;//初始化为table中第一个节点
    int n, i;//n为数组长度,i为索引
    
    //tab被延迟到插入新数据时再进行初始化
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    //如果数组中不包含Node引用,则新建Node节点存入数组中即可    
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);//new Node<>(hash, key, value, next)
    else {
        Node<K,V> e; //如果要插入的key-value已存在,用e指向该节点
        K k;
        //如果第一个节点就是要插入的key-value,则让e指向第一个节点(p在这里指向第一个节点)
        if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        //如果p是TreeNode类型,则调用红黑树的插入操作(注意:TreeNode是Node的子类)
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            //对链表进行遍历,并用binCount统计链表长度
            for (int binCount = 0; ; ++binCount) {
                //如果链表中不包含要插入的key-value,则将其插入到链表尾部
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    //如果链表长度大于或等于树化阈值,则进行树化操作
                    if (binCount >= TREEIFY_THRESHOLD - 1)
                        treeifyBin(tab, hash);
                    break;
                }
                //如果要插入的key-value已存在则终止遍历,否则向后遍历
                if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        //如果e不为null说明要插入的key-value已存在
        if (e != null) {
            V oldValue = e.value;
            //根据传入的onlyIfAbsent判断是否要更新旧值
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    //键值对数量超过阈值时,则进行扩容
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);//也是空函数?回调?不知道干嘛的
    return null;
}

从源码也可以看出 table数组是在第一次调用put方法后才进行初始化的

删除

HashMap的删除操作并不复杂,仅需三个步骤即可完成。

  1. 定位桶位置
  2. 遍历链表找到相等的节点
  3. 第三步删除节点
public V remove(Object key) {
    Node<K,V> e;
    return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value;
}

final Node<K,V> removeNode(int hash, Object key, Object value,boolean matchValue, boolean movable) {
    Node<K,V>[] tab; 
    Node<K,V> p; 
    int n, index;
    //1、定位元素桶位置
    if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; 
        K k; 
        V v;
        // 如果键的值与链表第一个节点相等,则将 node 指向该节点
        if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
            node = p;
        else if ((e = p.next) != null) {  
            // 如果是 TreeNode 类型,调用红黑树的查找逻辑定位待删除节点
            if (p instanceof TreeNode)
                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
            else {
                // 2、遍历链表,找到待删除节点
                do {
                    if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }        
        // 3、删除节点,并修复链表或红黑树
        if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) {
            if (node instanceof TreeNode)
                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
            else if (node == p)
                tab[index] = node.next;
            else
                p.next = node.next;
            ++modCount;
            --size;
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}

注意:删除节点后可能破坏了红黑树的平衡性质,removeTreeNode方法会对红黑树进行变色、旋转等操作来保持红黑树的平衡结构,这部分比较复杂,感兴趣的小伙伴可看下面这篇文章: 红黑树详解

遍历

在工作中HashMap的遍历操作也是非常常用的,也许有很多小伙伴喜欢用for-each来遍历,但是你知道其中有哪些坑吗?

看下面的例子,当我们在遍历HashMap的时候,若使用remove方法删除元素时会抛出ConcurrentModificationException异常

Map<String, Integer> map = new HashMap<>();
        map.put("1", 1);
        map.put("2", 2);
        map.put("3", 3);
        for (String s : map.keySet()) {
            if (s.equals("2")) 
                map.remove("2");
        }

这就是常说的fail-fast(快速失败)机制,这个就需要从一个变量说起

transient int modCount;

在HashMap中有一个名为modCount的变量,它用来表示集合被修改的次数,修改指的是插入元素或删除元素,可以回去看看上面插入删除的源码,在最后都会对modCount进行自增。

当我们在遍历HashMap时,每次遍历下一个元素前都会对modCount进行判断,若和原来的不一致说明集合结果被修改过了,然后就会抛出异常,这是Java集合的一个特性,我们这里以keySet为例,看看部分相关源码:

public Set<K> keySet() {
    Set<K> ks = keySet;
    if (ks == null) {
        ks = new KeySet();
        keySet = ks;
    }
    return ks;
}

final class KeySet extends AbstractSet<K> {  
    public final Iterator<K> iterator()     { return new KeyIterator(); } 
    // 省略部分代码
}

final class KeyIterator extends HashIterator implements Iterator<K> {
    public final K next() { return nextNode().key; }
}

/*HashMap迭代器基类,子类有KeyIterator、ValueIterator等*/
abstract class HashIterator {
    Node<K,V> next;        //下一个节点
    Node<K,V> current;     //当前节点
    int expectedModCount;  //修改次数
    int index;             //当前索引
    //无参构造
    HashIterator() {
        expectedModCount = modCount;
        Node<K,V>[] t = table;
        current = next = null;
        index = 0;
        //找到第一个不为空的桶的索引
        if (t != null && size > 0) {
            do {} while (index < t.length && (next = t[index++]) == null);
        }
    }
    //是否有下一个节点
    public final boolean hasNext() {
        return next != null;
    }
    //返回下一个节点
    final Node<K,V> nextNode() {
        Node<K,V>[] t;
        Node<K,V> e = next;
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();//fail-fast
        if (e == null)
            throw new NoSuchElementException();
        //当前的链表遍历完了就开始遍历下一个链表
        if ((next = (current = e).next) == null && (t = table) != null) {
            do {} while (index < t.length && (next = t[index++]) == null);
        }
        return e;
    }
    //删除元素
    public final void remove() {
        Node<K,V> p = current;
        if (p == null)
            throw new IllegalStateException();
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        current = null;
        K key = p.key;
        removeNode(hash(key), key, null, false, false);//调用外部的removeNode
        expectedModCount = modCount;
    }
}

相关代码如下,可以看到若modCount被修改了则会抛出ConcurrentModificationException异常。

if (modCount != expectedModCount)
            throw new ConcurrentModificationException();

那么如何在遍历时删除元素呢?

我们可以看看迭代器自带的remove方法,其中最后两行代码如下:

removeNode(hash(key), key, null, false, false);//调用外部的removeNode
expectedModCount = modCount;

意思就是会调用外部remove方法删除元素后,把modCount赋值给expectedModCount,这样的话两者一致就不会抛出异常了,所以我们应该这样写:

Map<String, Integer> map = new HashMap<>();
        map.put("1", 1);
        map.put("2", 2);
        map.put("3", 3);
        Iterator<String> iterator = map.keySet().iterator();
        while (iterator.hasNext()){
            if (iterator.next().equals("2"))
                iterator.remove();
        }

这里还有一个知识点就是在遍历HashMap时,我们会发现 遍历的顺序和插入的顺序不一致 ,这是为什么?

在HashIterator源码里面可以看出,它是先从桶数组中找到包含链表节点引用的桶。然后对这个桶指向的链表进行遍历。遍历完成后,再继续寻找下一个包含链表节点引用的桶,找到继续遍历。找不到,则结束遍历。这就解释了为什么遍历和插入的顺序不一致,不懂的同学请看下图:

一文看懂HashMap

equasl和hashcode

为什么添加到HashMap中的对象需要重写equals()和hashcode()方法?

简单看个例子,这里以Person为例:

public class Person {
    Integer id;
    String name;
    
    public Person(Integer id, String name) {
        this.id = id;
        this.name = name;
    }

    @Override
    public boolean equals(Object obj) {
        if (obj == null) return false;
        if (obj == this) return true;
        if (obj instanceof Person) {
            Person person = (Person) obj;
            if (this.id == person.id)
                return true;
        }
        return false;
    }

    public static void main(String[] args) {
        Person p1 = new Person(1, "aaa");
        Person p2 = new Person(1, "bbb");
        HashMap<Person, String> map = new HashMap<>();
        map.put(p1, "这是p1");
        System.out.println(map.get(p2));
    }
}
  • 原生的equals方法是使用==来比较对象的
  • 原生的hashCode值是根据内存地址换算出来的一个值

Person类重写equals方法来根据id判断是否相等,当没有重写hashcode方法时,插入p1后便无法用p2取出元素,这是因为p1和p2的哈希值不相等。

HashMap插入元素时是根据元素的哈希值来确定存放在数组中的位置,因此HashMap的key需要重写equals和hashcode方法。

总结

本文描述了HashMap的实现原理,并结合源码做了进一步的分析,后续有空的话会聊聊有关HashMap的线程安全问题,希望本篇文章能帮助到大家,同时也欢迎讨论指正,谢谢支持!

原文  https://segmentfault.com/a/1190000022184751
正文到此结束
Loading...