转载

大型Java进阶专题(五) 设计模式之单例模式

前言

​ 今天开始我们专题的第四课了,最近公司项目忙,没时间写,今天抽空继续。上篇文章对工厂模式进行了详细的讲解,想必大家对设计模式合理运用的好处深有感触。本章节将介绍:单例模式与原型模式。本章节参考资料书籍《Spring 5核心原理》中的第一篇 Spring 内功心法(Spring中常用的设计模式)(没有电子档,都是我取其精华并结合自己的理解,一个字一个字手敲出来的)。

单例模式

单例模式的应用场景

​ 单例模式(Singleton Pattern)是指确保一个类在任何情况下都绝对只有一个实例,并提供一个全局访问点。单例模式是创建型模式。单例模式在现实生活中应用也非常广泛。例如,国家主席、公司CEO、部门经理等。在 J2EE 标准中,ServletContext、ServletContextConfig等;在Spring框架应用中ApplicationContext;数据库的连接池也都是单例形式。

饿汉式单例

先看下单例模式的类结构图:

大型Java进阶专题(五) 设计模式之单例模式

​ 饿汉式单例是在类加载的时候就立即初始化,并且创建单例对象。绝对线程安全,在线程还没出现以前就是实例化了,不可能存在访问安全问题。

优点:没有加任何的锁、执行效率比较高,在用户体验上来说,比懒汉式更好。

缺点:类加载的时候就初始化,不管用与不用都占着空间,浪费了内存,有可能占着茅坑不拉屎。

​ Spring中IOC容器ApplicationContext本身就是典型的饿汉式单例。接下来看一段代码:

public class HungrySingleton {
    //类加载顺序:先静态、后动态
    //先属性、后方法
    //先上后下
    private static final HungrySingleton HUNGRY_SINGLETON = new HungrySingleton();

    private HungrySingleton() {
    }

    public static HungrySingleton getInstance() {
        return HUNGRY_SINGLETON;
    }
}

调用过程:当你第一次调用HungrySingleton.getInstance()时,类加载器会加载改对象,会先初始化心态属性,也就是执行了新建一个HungrySingleton对象,再加载静态方法getInstance(),返回的就是刚刚新建的对象。只有再调用都会直接返回了。

​ 此外还有另外一种写法,使用静态代码块:

public class HungrySingleton {
    //类加载顺序:静态代码块=》静态属性=》静态方法
    private static final HungrySingleton HUNGRY_SINGLETON;

    static {
        HUNGRY_SINGLETON = new HungrySingleton();
    }
    
    private HungrySingleton() {
    }

    public static HungrySingleton getInstance() {
        return HUNGRY_SINGLETON;
    }
}

​ 这两种写法都非常的简单,也非常好理解,饿汉式适用在单例对象较少的情况。下面我们来看性能更优的写法。

懒汉式单例

懒汉式单例的特点是:被外部类调用的时候内部类才会加载,下面看懒汉式单例的简单实现LazySimpleSingleton:

//当外部使用时才会实例化
public class LazySimpleSingleton {
    //静态块,公共内存区域
    private static LazySimpleSingleton LAZY_SINGLETON;

    public static LazySimpleSingleton getInstance() {
        if (LAZY_SINGLETON == null) {
            LAZY_SINGLETON = new LazySimpleSingleton();
        }
        return LAZY_SINGLETON;
    }

    private LazySimpleSingleton() {
    }
}

创建线程类:

public class ExectorThread implements Runnable{
    @Override
    public void run() {
        LazySimpleSingleton singleton = LazySimpleSingleton.getInstance();
        System.out.println(Thread.currentThread().getName() + ":" + singleton);
    }
}

客户端测试代码:

public class LazySimpleSingletonTest {
    public static void main(String[] args) {
        Thread t1 = new Thread(new ExectorThread());
        Thread t2 = new Thread(new ExectorThread());
        t1.start();
        t2.start();
        System.out.println("End");
    }
}

调用结果:

End
Thread-1:com.study.demo.LazySimpleSingleton@20cf7200
Thread-0:com.study.demo.LazySimpleSingleton@39b6c48f

一定几率出现创建两个不同结果的情况,意味着上面的单例存在线程安全隐患。这是因为两个线程同时执行的了,调用方法发现实例都还没来得及创建,两个线程就分别都创建了一个实例。有时,我们得到的运行结果可能是相同的两个对象,实际上是被后面执行的线程覆盖了,我们看到了一个假象,线程安全隐患依旧存在。那么,我们如何来优化代码,使得懒汉式单例在线程环境下安全呢?来看下面的代码,给getInstance()加上synchronized关键字,是这个方法变成线程同步方法:

//当外部使用时才会实例化
public class LazySimpleSingleton {
    //静态块,公共内存区域
    private static LazySimpleSingleton LAZY_SINGLETON;

    public synchronized static LazySimpleSingleton getInstance() {
        if (LAZY_SINGLETON == null) {
            LAZY_SINGLETON = new LazySimpleSingleton();
        }
        return LAZY_SINGLETON;
    }

    private LazySimpleSingleton() {
    }
}

​ 这时候,我们再来调试。当我们将其中一个线程执行并调用getInstance()方法时,另一个线程在调用getInstance()方法,线程的状态由RUNNING变成了MONITOR,出现阻塞。直到第一个线程执行完,第二个线程才恢复RUNNING状态继续调用getInstance()方法。

​ 完美的展现了synchronized监视锁的运行状态,线程安全的问题便解决了。但是,用synchronized加锁,在线程数量比较多情况下,如果CPU分配压力上升,会导致大批量线程出现阻塞,从而导致程序运行性能大幅下降。那么,有没有一种更好的方式,既兼顾线程安全又提升程序性能呢?答案是肯定的。我们来看双重检查锁的单例模式:

//当外部使用时才会实例化
public class LazySimpleSingleton {
    //静态块,公共内存区域
    private static LazySimpleSingleton LAZY_SINGLETON;

    //1.分配内存给这个对象
    //2.初始化对象
    //3.设置 lazy 指向刚分配的内存地址
    public static LazySimpleSingleton getInstance() {
        if (LAZY_SINGLETON == null) {
            synchronized (LazySimpleSingleton.class) {
                if (LAZY_SINGLETON == null) {
                    LAZY_SINGLETON = new LazySimpleSingleton();
                }
            }
        }
        return LAZY_SINGLETON;
    }

    private LazySimpleSingleton() {
    }
}

当第一个线程调用getInstance()方法时,第二个线程也可以调用getInstance()。当第一个线程执行到synchronized时会上锁,第二个线程就会变成MONITOR状态,出现阻塞。此时,阻塞并不是基于整个LazySimpleSingleton类的阻塞,而是在getInstance()方法内部阻塞,只要逻辑不是太复杂,对于调用者而言感知不到。但是,用到synchronized关键字,总归是要上锁,对程序性能还是存在一定影响的。难道就真的没有更好的方案吗?当然是有的。我们可以从类初始化角度来考虑,看下面的代码,采用静态内部类的方式:

//这种形式兼顾饿汉式的内存浪费,也兼顾 synchronized 性能问题
//完美地屏蔽了这两个缺点
public class LazyInnerSingleton {
    private LazyInnerSingleton() {
    }
    //每一个关键字都不是多余的
    //static 是为了使单例的空间共享
    //fin保证这个方法不会被重写,重载
    public static final LazyInnerSingleton getInstance() {
        //在返回结果以前,一定会先加载内部类
        return LazyHolder.INNER_SINGLETON;
    }
    //如果没使用的话,内部类是不加载的
    private static class LazyHolder{
        private static final LazyInnerSingleton INNER_SINGLETON = new LazyInnerSingleton();
    }
}

这种形式兼顾饿汉式的内存浪费,也兼顾synchronized性能问题。内部类一定是要在方法调用之前初始化,巧妙地避免了线程安全问题。

反射破坏单例

​ 大家有没有发现,上面介绍的单例模式的构造方法除了加上private以外,没有做任何处理。如果我们使用反射来调用其构造方法,然后,再调用getInstance()方法,应该就会两个不同的实例。现在来看一段测试代码,LazyInnerClassSingleton为例:

public class LazyInnerClassSingletonTest {
    public static void main(String[] args) {
            try{
                //很无聊的情况下,进行破坏
                Class<?> clazz = LazyInnerClassSingleton.class;
                //通过反射拿到私有的构造方法
                Constructor c = clazz.getDeclaredConstructor(null);
                //强制访问,强吻,不愿意也要吻
                c.setAccessible(true);
                //暴力初始化
                Object o1 = c.newInstance();
                //调用了两次构造方法,相当于 new 了两次
                //犯了原则性问题,
                Object o2 = c.newInstance();
                System.out.println(o1 == o2);
                // Object o2 = c.newInstance();
            }catch (Exception e){
         	   e.printStackTrace();
            }
    }
}
//运行结果
false

​ 显然,是创建了两个不同的实例。现在,我们在其构造方法中做一些限制,一旦出现多次重复创建,则直接抛出异常。来看优化后的代码:

//史上最牛 B 的单例模式的实现方式
public class LazyInnerClassSingleton {
    //默认使用 LazyInnerClassGeneral 的时候,会先初始化内部类
    //如果没使用的话,内部类是不加载的
    private LazyInnerClassSingleton(){
            if(LazyHolder.LAZY != null){
                throw new RuntimeException("不允许创建多个实例");
            }
        }
        //每一个关键字都不是多余的
        //static 是为了使单例的空间共享
        //保证这个方法不会被重写,重载
        public static final LazyInnerClassSingleton getInstance(){
            //在返回结果以前,一定会先加载内部类
            return LazyHolder.LAZY;
        }
        //默认不加载
        private static class LazyHolder{
            private static final LazyInnerClassSingleton LAZY = new LazyInnerClassSingleton();
    }
}

​ 再运行测试代码,会得到以下结果:调用构造方法就会抛出异常。至此,史上最牛B的单例写法便大功告成。

序列化破坏单例

​ 当我们将一个单例对象创建好,有时候需要将对象序列化然后写入到磁盘,下次使用时再从磁盘中读取到对象,反序列化转化为内存对象。反序列化后的对象会重新分配内存,即重新创建。那如果序列化的目标的对象为单例对象,就违背了单例模式的初衷,相当于破坏了单例,来看一段代码:

//反序列化时导致单例破坏
public class SeriableSingleton implements Serializable {
    //序列化就是说把内存中的状态通过转换成字节码的形式
    //从而转换一个 IO 流,写入到其他地方(可以是磁盘、网络 IO)
    //内存中状态给永久保存下来了
    //反序列化
    //讲已经持久化的字节码内容,转换为 IO 流
    //通过 IO 流的读取,进而将读取的内容转换为 Java 对象
    //在转换过程中会重新创建对象 new
    public final static SeriableSingleton INSTANCE = new SeriableSingleton();
    private SeriableSingleton(){}
    public static SeriableSingleton getInstance(){
    return INSTANCE;
    }
}

编写测试代码:

package com.gupaoedu.vip.pattern.singleton.test;
import com.gupaoedu.vip.pattern.singleton.seriable.SeriableSingleton;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

public class SeriableSingletonTest {
    public static void main(String[] args) {
        SeriableSingleton s1 = null;
        SeriableSingleton s2 = SeriableSingleton.getInstance();
        FileOutputStream fos = null;
        try {
            fos = new FileOutputStream("SeriableSingleton.obj");
            ObjectOutputStream oos = new ObjectOutputStream(fos);
            oos.writeObject(s2);
            oos.flush();
            oos.close();
            FileInputStream fis = new FileInputStream("SeriableSingleton.obj");
            ObjectInputStream ois = new ObjectInputStream(fis);
            s1 = (SeriableSingleton)ois.readObject();
            ois.close();
            System.out.println(s1);
            System.out.println(s2);
            System.out.println(s1 == s2);
        } catch (Exception e) {
        	e.printStackTrace();
        }
    }
}
//运行结果  false

​ 运行结果中,可以看出,反序列化后的对象和手动创建的对象是不一致的,实例化了两次,违背了单例的设计初衷。那么,我们如何保证序列化的情况下也能够实现单例?其实很简单,只需要增加readResolve()方法即可。来看优化代码:

package com.gupaoedu.vip.pattern.singleton.seriable;
    import java.io.Serializable;

    public class SeriableSingleton implements Serializable {
        public final static SeriableSingleton INSTANCE = new SeriableSingleton();
        private SeriableSingleton(){}
        public static SeriableSingleton getInstance(){
        return INSTANCE;
    }
        
    private Object readResolve(){
   		return INSTANCE;
    }
}

//再次运行结果 为ture

大家一定会关心这是什么原因呢?为什么要这样写?看上去很神奇的样子,也让人有些费解。不如,我们一起来看看 JDK 的源码实现以一清二楚了。我们进入ObjectInputStream类的readObject()方法,代码如下:

public final Object readObject() throws IOException, ClassNotFoundException{
    if (enableOverride) {
    	return readObjectOverride();
    }
    // if nested read, passHandle contains handle of enclosing object
    int outerHandle = passHandle;
    try {
            Object obj = readObject0(false);
            handles.markDependency(outerHandle, passHandle);
            ClassNotFoundException ex = handles.lookupException(passHandle);
        if (ex != null) {
       	 throw ex;
        }
        if (depth == 0) {
        	vlist.doCallbacks();
        }
        return obj;
    } finally {
        passHandle = outerHandle;
        if (closed && depth == 0) {
        	clear();
        }
    }
}

我们发现在readObject中又调用了我们重写的readObject0()方法。 进入readObject0()方法,代码如下:

private Object readObject0(boolean unshared) throws IOException {
    ...
    case TC_OBJECT:
    return checkResolve(readOrdinaryObject(unshared));
    ...
}

我们看到TC_OBJECTD中判断,调用了ObjectInputStream的readOrdinaryObject()方法,我们继续进入看源码:

private Object readOrdinaryObject(boolean unshared)throws IOException{
    if (bin.readByte() != TC_OBJECT) {
   	 throw new InternalError();
    }
        ObjectStreamClass desc = readClassDesc(false);
        desc.checkDeserialize();
        Class<?> cl = desc.forClass();
    if (cl == String.class || cl == Class.class
    || cl == ObjectStreamClass.class) {
    	throw new InvalidClassException("invalid class descriptor");
    }
    Object obj;
    try {
        obj = desc.isInstantiable() ? desc.newInstance() : null;
    } catch (Exception ex) {
        throw (IOException) new InvalidClassException(
        desc.forClass().getName(),
        "unable to create instance").initCause(ex);
    }
    ...
    return obj;
}

发现调用了ObjectStreamClass的isInstantiable()方法, 而isInstantiable()里面的代码如下:

boolean isInstantiable() {
    requireInitialized();
    return (cons != null);
}

代码非常简单,就是判断一下构造方法是否为空,构造方法不为空就返回true。意味着,只要有无参构造方法就会实例化。这时候,其实还没有找到为什么加上readResolve()方法就避免了单例被破坏的真正原因。我再回ObjectInputStream的readOrdinaryObject()方法继续往下看:

private Object readOrdinaryObject(boolean unshared)throws IOException{
    if (bin.readByte() != TC_OBJECT) {
   	 throw new InternalError();
    }
    ObjectStreamClass desc = readClassDesc(false);
    desc.checkDeserialize();
    Class<?> cl = desc.forClass();
    if (cl == String.class || cl == Class.class
    || cl == ObjectStreamClass.class) {
    	throw new InvalidClassException("invalid class descriptor");
    }
    Object obj;
    try {
   	 obj = desc.isInstantiable() ? desc.newInstance() : null;
    } catch (Exception ex) {
        throw (IOException) new InvalidClassException(
        desc.forClass().getName(),
        "unable to create instance").initCause(ex);
    }
    ...
    if (obj != null && handles.lookupException(passHandle) == null && desc.hasReadResolveMethod()){
        Object rep = desc.invokeReadResolve(obj);
        if (unshared && rep.getClass().isArray()) {
        rep = cloneArray(rep);
    }
    if (rep != obj) {
  	  // Filter the replacement object
        if (rep != null) {
            if (rep.getClass().isArray()) {
           	 filterCheck(rep.getClass(), Array.getLength(rep));
            } else {
            	filterCheck(rep.getClass(), -1);
            }
            }
            handles.setObject(passHandle, obj = rep);
        }
    }
    return obj;
}

判断无参构造方法是否存在之后,又调用了hasReadResolveMethod()方法,来看代码:

boolean hasReadResolveMethod() {
    requireInitialized();
    return (readResolveMethod != null);
}

逻辑非常简单,就是判断 readResolveMethod 是否为空,不为空就返回 true。那么readResolveMethod 是在哪里赋值的呢?通过全局查找找到了赋值代码在私有方法ObjectStreamClass()方法中给readResolveMethod进行赋值,来看代码:

readResolveMethod = getInheritableMethod(
cl, "readResolve", null, Object.class);

上面的逻辑其实就是通过反射找到一个无参的readResolve()方法,并且保存下来。现在再 回 到 ObjectInputStream 的 readOrdinaryObject() 方 法 继 续 往 下 看 , 如 果readResolve()存在则调用invokeReadResolve()方法,来看代码:

Object invokeReadResolve(Object obj) throws IOException, UnsupportedOperationException {
    requireInitialized();
    if (readResolveMethod != null) {
        try {
        	return readResolveMethod.invoke(obj, (Object[]) null);
        } catch (InvocationTargetException ex) {
        	Throwable th = ex.getTargetException();
            if (th instanceof ObjectStreamException) {
                throw (ObjectStreamException) th;
            } else {

                throwMiscException(th);
                throw new InternalError(th); // never reached
            }
        } catch (IllegalAccessException ex) {
            // should not occur, as access checks have been suppressed
            throw new InternalError(ex);
        }
    } else {
 	   throw new UnsupportedOperationException();
    }
}

我们可以看到在invokeReadResolve()方法中用反射调用了readResolveMethod方法。通过JDK源码分析我们可以看出,虽然,增加readResolve()方法返回实例,解决了单例被破坏的问题。但是,我们通过分析源码以及调试,我们可以看到实际上实例化了两次,只不过新创建的对象没有被返回而已。那如果,创建对象的动作发生频率增大,就意味着内存分配开销也就随之增大,难道真的就没办法从根本上解决问题吗?下面我们来注册式单例也许能帮助到你。

注册式单例

注册式单例又称为登记式单例,就是将每一个实例都登记到某一个地方,使用唯一的标识获取实例。注册式单例有两种写法:一种为容器缓存,一种为枚举登记。先来看枚举式单例的写法,来看代码,创建EnumSingleton类:

public enum EnumSingleton {
    INSTANCE;
    private Object data;
    public Object getData() {
   	 return data;
    }
    public void setData(Object data) {
   	 this.data = data;
    }
    public static EnumSingleton getInstance(){
   	 return INSTANCE;
    }
}

来看测试代码:

public class EnumSingletonTest {
    public static void main(String[] args) {
    try {
            EnumSingleton instance1 = null;
            EnumSingleton instance2 = EnumSingleton.getInstance();
            instance2.setData(new Object());
            FileOutputStream fos = new FileOutputStream("EnumSingleton.obj");
            ObjectOutputStream oos = new ObjectOutputStream(fos);
            oos.writeObject(instance2);
            oos.flush();
            oos.close();
            FileInputStream fis = new FileInputStream("EnumSingleton.obj");
            ObjectInputStream ois = new ObjectInputStream(fis);
            instance1 = (EnumSingleton) ois.readObject();
            ois.close();
            System.out.println(instance1.getData());
            System.out.println(instance2.getData());
            System.out.println(instance1.getData() == instance2.getData());
        }catch (Exception e){
      	  e.printStackTrace();
        }
    }
}
//运行结果为ture 具体为什么这么神奇 可以自己追源码探索下 这里不再赘述了
原文  http://www.cnblogs.com/whgk/p/12611267.html
正文到此结束
Loading...