性能优化一向是后端服务优化的重点,但是线上性能故障问题不是经常出现,或者受限于业务产品,根本就没办法出现性能问题,包括笔者自己遇到的性能问题也不多,所以为了提前储备知识,当出现问题的时候不会手忙脚乱,我们本篇文章来模拟下常见的几个Java性能故障,来学习怎么去分析和定位。
既然是定位问题,肯定是需要借助工具,我们先了解下需要哪些工具可以帮忙定位问题。
top
命令使我们最常用的Linux命令之一,它可以实时的显示当前正在执行的进程的CPU使用率,内存使用率等系统信息。 top -Hp pid
可以查看线程的系统资源使用情况。
vmstat是一个指定周期和采集次数的虚拟内存检测工具,可以统计内存,CPU,swap的使用情况,它还有一个重要的常用功能,用来观察进程的上下文切换。字段说明如下:
pidstat 是 Sysstat 中的一个组件,也是一款功能强大的性能监测工具, top
和 vmstat
两个命令都是监测进程的内存、CPU 以及 I/O 使用情况,而 pidstat 命令可以检测到线程级别的。 pidstat
命令线程切换字段说明如下:
UID :被监控任务的真实用户ID。
TGID :线程组ID。
TID:线程ID。
cswch/s:主动切换上下文次数,这里是因为资源阻塞而切换线程,比如锁等待等情况。
nvcswch/s:被动切换上下文次数,这里指CPU调度切换了线程。
jstack是JDK工具命令,它是一种线程堆栈分析工具,最常用的功能就是使用 jstack pid
命令查看线程的堆栈信息,也经常用来排除死锁情况。
它可以检测Java程序运行的实时情况,包括堆内存信息和垃圾回收信息,我们常常用来查看程序垃圾回收情况。常用的命令是 jstat -gc pid
。信息字段说明如下:
S0C:年轻代中 To Survivor 的容量(单位 KB);
S1C:年轻代中 From Survivor 的容量(单位 KB);
S0U:年轻代中 To Survivor 目前已使用空间(单位 KB);
S1U:年轻代中 From Survivor 目前已使用空间(单位 KB);
EC:年轻代中 Eden 的容量(单位 KB);
EU:年轻代中 Eden 目前已使用空间(单位 KB);
OC:老年代的容量(单位 KB);
OU:老年代目前已使用空间(单位 KB);
MC:元空间的容量(单位 KB);
MU:元空间目前已使用空间(单位 KB);
YGC:从应用程序启动到采样时年轻代中 gc 次数;
YGCT:从应用程序启动到采样时年轻代中 gc 所用时间 (s);
FGC:从应用程序启动到采样时 老年代(Full Gc)gc 次数;
FGCT:从应用程序启动到采样时 老年代代(Full Gc)gc 所用时间 (s);
GCT:从应用程序启动到采样时 gc 用的总时间 (s)。
jmap也是JDK工具命令,他可以查看堆内存的初始化信息以及堆内存的使用情况,还可以生成dump文件来进行详细分析。查看堆内存情况命令 jmap -heap pid
。
MAT(Memory Analyzer Tool)工具是eclipse的一个插件(MAT也可以单独使用),它分析大内存的dump文件时,可以非常直观的看到各个对象在堆空间中所占用的内存大小、类实例数量、对象引用关系、利用OQL对象查询,以及可以很方便的找出对象GC Roots的相关信息。 下载地址可以点击这里
基础环境jdk1.8,采用SpringBoot框架来写几个接口来触发模拟场景,首先是模拟CPU占满情况
模拟CPU占满还是比较简单,直接写一个死循环计算消耗CPU即可。
/** * 模拟CPU占满 */ @GetMapping("/cpu/loop") public void testCPULoop() throws InterruptedException { System.out.println("请求cpu死循环"); Thread.currentThread().setName("loop-thread-cpu"); int num = 0; while (true) { num++; if (num == Integer.MAX_VALUE) { System.out.println("reset"); } num = 0; } }
请求接口地址测试 curl localhost:8080/cpu/loop
,发现CPU立马飙升到100%
通过执行 top -Hp 32805
查看Java线程情况
执行 printf '%x' 32826
获取16进制的线程id,用于 dump
信息查询,结果为 803a
。最后我们执行 jstack 32805 |grep -A 20 803a
来查看下详细的 dump
信息。
这里 dump
信息直接定位出了问题方法以及代码行,这就定位出了CPU占满的问题。
模拟内存泄漏借助了ThreadLocal对象来完成,ThreadLocal是一个线程私有变量,可以绑定到线程上,在整个线程的生命周期都会存在,但是由于ThreadLocal的特殊性,ThreadLocal是基于ThreadLocalMap实现的,ThreadLocalMap的Entry继承WeakReference,而Entry的Key是WeakReference的封装,换句话说Key就是弱引用,弱引用在下次GC之后就会被回收,如果ThreadLocal在set之后不进行后续的操作,因为GC会把Key清除掉,但是Value由于线程还在存活,所以Value一直不会被回收,最后就会发生内存泄漏。
/** * 模拟内存泄漏 */ @GetMapping(value = "/memory/leak") public String leak() { System.out.println("模拟内存泄漏"); ThreadLocal<Byte[]> localVariable = new ThreadLocal<Byte[]>(); localVariable.set(new Byte[4096 * 1024]);// 为线程添加变量 return "ok"; }
我们给启动加上堆内存大小限制,同时设置内存溢出的时候输出堆栈快照并输出日志。
java -jar -Xms500m -Xmx500m -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp/heapdump.hprof -XX:+PrintGCTimeStamps -XX:+PrintGCDetails -Xloggc:/tmp/heaplog.log analysis-demo-0.0.1-SNAPSHOT.jar
启动成功后我们循环执行100次, for i in {1..500}; do curl localhost:8080/memory/leak;done
,还没执行完毕,系统已经返回500错误了。查看系统日志出现了如下异常:
java.lang.OutOfMemoryError: Java heap space
我们用 jstat -gc pid
命令来看看程序的GC情况。
很明显,内存溢出了,堆内存经过45次 Full Gc 之后都没释放出可用内存,这说明当前堆内存中的对象都是存活的,有GC Roots引用,无法回收。那是什么原因导致内存溢出呢?是不是我只要加大内存就行了呢?如果是普通的内存溢出也许扩大内存就行了,但是如果是内存泄漏的话,扩大的内存不一会就会被占满,所以我们还需要确定是不是内存泄漏。我们之前保存了堆 Dump 文件,这个时候借助我们的MAT工具来分析下。导入工具选择 Leak Suspects Report
,工具直接就会给你列出问题报告。
这里已经列出了可疑的4个内存泄漏问题,我们点击其中一个查看详情。
这里已经指出了内存被线程占用了接近50M的内存,占用的对象就是ThreadLocal。如果想详细的通过手动去分析的话,可以点击 Histogram
,查看最大的对象占用是谁,然后再分析它的引用关系,即可确定是谁导致的内存溢出。
上图发现占用内存最大的对象是一个Byte数组,我们看看它到底被那个GC Root引用导致没有被回收。按照上图红框操作指引,结果如下图:
我们发现Byte数组是被线程对象引用的,图中也标明,Byte数组对像的GC Root是线程,所以它是不会被回收的,展开详细信息查看,我们发现最终的内存占用对象是被ThreadLocal对象占据了。这也和MAT工具自动帮我们分析的结果一致。
死锁会导致耗尽线程资源,占用内存,表现就是内存占用升高,CPU不一定会飙升(看场景决定),如果是直接new线程,会导致JVM内存被耗尽,报无法创建线程的错误,这也是体现了使用线程池的好处。
ExecutorService service = new ThreadPoolExecutor(4, 10, 0, TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>(1024), Executors.defaultThreadFactory(), new ThreadPoolExecutor.AbortPolicy()); /** * 模拟死锁 */ @GetMapping("/cpu/test") public String testCPU() throws InterruptedException { System.out.println("请求cpu"); Object lock1 = new Object(); Object lock2 = new Object(); service.submit(new DeadLockThread(lock1, lock2), "deadLookThread-" + new Random().nextInt()); service.submit(new DeadLockThread(lock2, lock1), "deadLookThread-" + new Random().nextInt()); return "ok"; } public class DeadLockThread implements Runnable { private Object lock1; private Object lock2; public DeadLockThread(Object lock1, Object lock2) { this.lock1 = lock1; this.lock2 = lock2; } @Override public void run() { synchronized (lock2) { System.out.println(Thread.currentThread().getName()+"get lock2 and wait lock1"); try { TimeUnit.MILLISECONDS.sleep(2000); } catch (InterruptedException e) { e.printStackTrace(); } synchronized (lock1) { System.out.println(Thread.currentThread().getName()+"get lock1 and lock2 "); } } } }
我们循环请求接口2000次,发现不一会系统就出现了日志错误,线程池和队列都满了,由于我选择的当队列满了就拒绝的策略,所以系统直接抛出异常。
java.util.concurrent.RejectedExecutionException: Task java.util.concurrent.FutureTask@2760298 rejected from java.util.concurrent.ThreadPoolExecutor@7ea7cd51[Running, pool size = 10, active threads = 10, queued tasks = 1024, completed tasks = 846]
通过 ps -ef|grep java
命令找出 Java 进程 pid,执行 jstack pid
即可出现java线程堆栈信息,这里发现了5个死锁,我们只列出其中一个,很明显线程 pool-1-thread-2
锁住了 0x00000000f8387d88
等待 0x00000000f8387d98
锁,线程 pool-1-thread-1
锁住了 0x00000000f8387d98
等待锁 0x00000000f8387d88
,这就产生了死锁。
Java stack information for the threads listed above: =================================================== "pool-1-thread-2": at top.luozhou.analysisdemo.controller.DeadLockThread2.run(DeadLockThread.java:30) - waiting to lock <0x00000000f8387d98> (a java.lang.Object) - locked <0x00000000f8387d88> (a java.lang.Object) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) "pool-1-thread-1": at top.luozhou.analysisdemo.controller.DeadLockThread1.run(DeadLockThread.java:30) - waiting to lock <0x00000000f8387d88> (a java.lang.Object) - locked <0x00000000f8387d98> (a java.lang.Object) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) Found 5 deadlocks.
上下文切换会导致将大量CPU时间浪费在寄存器、内核栈以及虚拟内存的保存和恢复上,导致系统整体性能下降。当你发现系统的性能出现明显的下降时候,需要考虑是否发生了大量的线程上下文切换。
@GetMapping(value = "/thread/swap") public String theadSwap(int num) { System.out.println("模拟线程切换"); for (int i = 0; i < num; i++) { new Thread(new ThreadSwap1(new AtomicInteger(0)),"thread-swap"+i).start(); } return "ok"; } public class ThreadSwap1 implements Runnable { private AtomicInteger integer; public ThreadSwap1(AtomicInteger integer) { this.integer = integer; } @Override public void run() { while (true) { integer.addAndGet(1); Thread.yield(); //让出CPU资源 } } }
这里我创建多个线程去执行基础的原子+1操作,然后让出 CPU 资源,理论上 CPU 就会去调度别的线程,我们请求接口创建100个线程看看效果如何, curl localhost:8080/thread/swap?num=100
。接口请求成功后,我们执行`vmstat 1 10,表示每1秒打印一次,打印10次,线程切换采集结果如下:
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu----- r b swpd free buff cache si so bi bo in cs us sy id wa st 101 0 128000 878384 908 468684 0 0 0 0 4071 8110498 14 86 0 0 0 100 0 128000 878384 908 468684 0 0 0 0 4065 8312463 15 85 0 0 0 100 0 128000 878384 908 468684 0 0 0 0 4107 8207718 14 87 0 0 0 100 0 128000 878384 908 468684 0 0 0 0 4083 8410174 14 86 0 0 0 100 0 128000 878384 908 468684 0 0 0 0 4083 8264377 14 86 0 0 0 100 0 128000 878384 908 468688 0 0 0 108 4182 8346826 14 86 0 0 0
这里我们关注4个指标, r
, cs
, us
, sy
。
r=100,说明等待的进程数量是100,线程有阻塞。
cs=800多万,说明每秒上下文切换了800多万次,这个数字相当大了。
us=14,说明用户态占用了14%的CPU时间片去处理逻辑。
sy=86,说明内核态占用了86%的CPU,这里明显就是做上下文切换工作了。
我们通过 top
命令以及 top -Hp pid
查看进程和线程CPU情况,发现Java线程CPU占满了,但是线程CPU使用情况很平均,没有某一个线程把CPU吃满的情况。
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 87093 root 20 0 4194788 299056 13252 S 399.7 16.1 65:34.67 java
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 87189 root 20 0 4194788 299056 13252 R 4.7 16.1 0:41.11 java 87129 root 20 0 4194788 299056 13252 R 4.3 16.1 0:41.14 java 87130 root 20 0 4194788 299056 13252 R 4.3 16.1 0:40.51 java 87133 root 20 0 4194788 299056 13252 R 4.3 16.1 0:40.59 java 87134 root 20 0 4194788 299056 13252 R 4.3 16.1 0:40.95 java
结合上面用户态CPU只使用了14%,内核态CPU占用了86%,可以基本判断是Java程序线程上下文切换导致性能问题。
我们使用 pidstat
命令来看看Java进程内部的线程切换数据,执行 pidstat -p 87093 -w 1 10
,采集数据如下:
11:04:30 PM UID TGID TID cswch/s nvcswch/s Command 11:04:30 PM 0 - 87128 0.00 16.07 |__java 11:04:30 PM 0 - 87129 0.00 15.60 |__java 11:04:30 PM 0 - 87130 0.00 15.54 |__java 11:04:30 PM 0 - 87131 0.00 15.60 |__java 11:04:30 PM 0 - 87132 0.00 15.43 |__java 11:04:30 PM 0 - 87133 0.00 16.02 |__java 11:04:30 PM 0 - 87134 0.00 15.66 |__java 11:04:30 PM 0 - 87135 0.00 15.23 |__java 11:04:30 PM 0 - 87136 0.00 15.33 |__java 11:04:30 PM 0 - 87137 0.00 16.04 |__java
根据上面采集的信息,我们知道Java的线程每秒切换15次左右,正常情况下,应该是个位数或者小数。结合这些信息我们可以断定Java线程开启过多,导致频繁上下文切换,从而影响了整体性能。
系统上下文切换分为三种情况:
1、多任务:在多任务环境中,一个进程被切换出CPU,运行另外一个进程,这里会发生上下文切换。
2、中断处理:发生中断时,硬件会切换上下文。在vmstat命令中是 in
3、用户和内核模式切换:当操作系统中需要在用户模式和内核模式之间进行转换时,需要进行上下文切换,比如进行系统函数调用。
Linux 为每个 CPU 维护了一个就绪队列,将活跃进程按照优先级和等待 CPU 的时间排序,然后选择最需要 CPU 的进程,也就是优先级最高和等待 CPU 时间最长的进程来运行。也就是vmstat命令中的 r
。
那么,进程在什么时候才会被调度到 CPU 上运行呢?
结合我们之前的内容分析,阻塞的就绪队列是100左右,而我们的CPU只有4核,这部分原因造成的上下文切换就可能会相当高,再加上中断次数是4000左右和系统的函数调用等,整个系统的上下文切换到800万也不足为奇了。Java内部的线程切换才15次,是因为线程使用 Thread.yield()
来让出CPU资源,但是CPU有可能继续调度该线程,这个时候线程之间并没有切换,这也是为什么内部的某个线程切换次数并不是非常大的原因。
本文模拟了常见的性能问题场景,分析了如何定位CPU100%、内存泄漏、死锁、线程频繁切换问题。分析问题我们需要做好两件事,第一,掌握基本的原理,第二,借助好工具。本文也列举了分析问题的常用工具和命令,希望对你解决问题有所帮助。当然真正的线上环境可能十分复杂,并没有模拟的环境那么简单,但是原理是一样的,问题的表现也是类似的,我们重点抓住原理,活学活用,相信复杂的线上问题也可以顺利解决。
1、 https://linux.die.net/man/1/pidstat
2、 https://linux.die.net/man/8/vmstat
3、 https://help.eclipse.org/2020-03/index.jsp?topic=/org.eclipse.mat.ui.help/welcome.html