java虚拟机(java virtual machine,JVM),一种能够运行java字节码的虚拟机。 作为一种编程语言的虚拟机,实际上不只是专用于Java语言,只要生成的编译文件匹配JVM对加载编译文件格式要求,任何语言都可以由JVM编译运行,比如kotlin、scala等。 jvm有很多,除了Hotspot,还有JRockit、J9等 复制代码
JVM由三个主要的子系统构成: 类加载子系统、运行时数据区(内存结构)、执行引擎 复制代码
当一个ClassLoader加载一个类的时候,除非显示的使用另一个ClassLoader,该类所依赖和引用的类也由这个 ClassLoader载入 复制代码
指先委托父类加载器寻找目标类,在找不到的情况下载自己的路径中查找并载入目标类 双亲委派模式的优势 沙箱安全机制:比如自己写的String.class类不会被加载,这样可以防止核心库被随意篡改 避免类的重复加载:当父ClassLoader已经加载了该类的时候,就不需要子ClassLoader再加载一次 复制代码
从图中可以看到,主要分为方法区、堆、栈、程序计数器、本地方法栈;
类的所有字段和方法字节码,以及一些特殊方法如构造函数,接口代码在这里定义。简单来说,所有定义的方法的 信息都保存在该区域,静态变量+常量+类信息(构造方法/接口定义)+运行时常量池都存在方法区中; 虽然Java虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做Non-Heap(非堆),目的应该是为了和Java的堆区分开; 复制代码
虚拟机启动时自动分配创建,用于存放对象的实例,几乎所有对象都在堆上分配内存,当对象无法在该空间申请到内存是将抛出OutOfMemoryError异常。同时也是垃圾收集器管理的主要区域。
栈(Stack) Java线程执行方法的内存模型,一个线程对应一个栈,每个方法在执行的同时都会创建一个栈帧(用于存储局部变量表,操作数栈,动态链接,方法出口等信息)不存在垃圾回收问题,只要线程一结束该栈就释放,生命周期和线程一致
本地方法栈(Native Method Stack) 和栈作用很相似,区别不过是Java栈为JVM执行Java方法服务,而本地方法栈为JVM执行native方法服务。登记native方法,在Execution Engine执行时加载本地方法库
程序计数器(Program Counter Register) 就是一个指针,指向方法区中的方法字节码(用来存储指向吓一跳指令的地址,也即将要执行的指令代码),由执行引擎读取下一条指令,是一个非常小的内存空间,几乎可以忽略不计
堆中几乎放着所有的对象实例,对堆垃圾回收前的第一步就是要判断哪些对象已经死亡(即不能再被任何途径使用的对象)
引用计数法;
可达性分析算法
运行时常量池主要回收的是废弃的常量。那么,我们怎么判断一个常量时废弃常量呢?
需要满足以下三个条件:
虚拟机可以对满足上述3个条件的无用类进行回收,这里仅仅是”可以“,而并不是和对象一样不适用了就必然会被回收;
为了解决效率问题,复制算法出现了。它可以把内存分为大小相同的两块,每次只使用其中的一块。当这一块的内存,使用完后,就将还存活的对象复制到另一块区,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收
根据老年代的特点提出的一种标记算法,标记过程和“标记-清除”算法一样,但是后续步骤不是直接对可回收对象进行回收,而是让所有存活的对象向一段移动,然后直接清理掉边界以外的内存
现在的商用虚拟机的垃圾收集器基本都采用"分代收集"算法,这种算法就是根据对象存活周期的不同将内存分为几块。一般将java堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。
Serial(串行)收集器收集器是最基本、历史最悠久的垃圾收集器了。一个单线程收集器,它的 “单线程” 的意义不仅仅意味着它只会使用一条垃圾收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集工作的时候必须暂停其他所有的工作线程( “Stop The World” ),直到它收集结束。
Serial收集器的老年代版本,它同样是一个单线程收集器。它主要有两大用途:一种用途是在JDK1.5以及以前的版本中与Parallel Scavenge收集器搭配使用,另一种用途是作为CMS收集器的后备方案
Parallel Scavenge收集器的老年代版本。使用多线程和“标记-整理”算法。在注重吞吐量以及CPU资源的场合,都可以优先考虑 Parallel Scavenge收集器和Parallel Old收集器。
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它而非常符合在注重用户体验的应用上使用。
CMS(Concurrent Mark Sweep)收集器是HotSpot虚拟机第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。
从名字中的Mark Sweep这两个词可以看出,CMS收集器是一种 “标记-清除”算法实现的,它的运作过程相比于前面几种垃圾收集器来说更加复杂一些。整个过程分为四个步骤:
CMS主要优点:并发收集、低停顿。但是它有下面三个明显的缺点:
G1 (Garbage-First)是一款面向服务器的垃圾收集器,主要针对配备多颗处理器及大容量内存的机器. 以极高概率满足,GC停顿时间要求的同时,还具备高吞吐量性能特征; 被视为JDK1.7中HotSpot虚拟机的一个重要进化特征。它具备一下特点:
并行与并发:G1能充分利用CPU、多核环境下的硬件优势,使用多个CPU(CPU或者CPU核心)来缩短StopThe-World停顿时间。部分其他收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让java程序继续执行
分代收集:虽然G1可以不需要其他收集器配合就能独立管理整个GC堆,但是还是保留了分代的概念。 空间整合:与CMS的“标记–清理”算法不同,G1从整体来看是基于“标记整理”算法实现的收集器;从局部上来看是基于“复制”算法实现的
可预测的停顿:这是G1相对于CMS的另一个大优势,降低停顿时间是G1 和 CMS 共同的关注点,但G1 除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内
G1收集器的运作大致分为以下几个步骤:
G1收集器在后台维护了一个优先列表,每次根据允许的收集时间,优先选择回收价值最大的Region(这也就是它的名字Garbage-First的由来)。这种使用Region划分内存空间以及有优先级的区域回收方式,保证了GF收集器在有限时间内可以尽可能高的收集效率(把内存化整为零)
即ZGC,是一个可伸缩的、低延迟的垃圾收集器,主要为了满足如下目标进行设计: 停顿时间不会超过10ms 停顿时间不会随着堆的增大而增大(不管多大的堆都能保持在10ms以下) 可支持几百M,甚至几T的堆大小(最大支持4T) 停顿时间在10ms以下,10ms其实是一个很保守的数据,在SPECjbb 2015基准测试,128G的大堆下最大停顿时间才1.68ms,远低于10ms;
The Z Garbage Collector, also known as ZGC, is a scalable low latency garbage collector designed to meet the following goals: Pause times do not exceed 10ms Pause times do not increase with the heap or live-set size Handle heaps ranging from a few hundred megabytes to multi terabytes in size 复制代码
JVM调优主要就是调整下面两个指标
-Xss:每个线程的栈大小 -Xms:初始堆大小,默认物理内存的1/64 -Xmx:最大堆大小,默认物理内存的1/4 -Xmn:新生代大小 -XX:NewSize:设置新生代初始大小-XX:NewRatio:默认2表示新生代占年老代的1/2,占整个堆内存的1/3。 -XX:SurvivorRatio:默认8表示一个survivor区占用1/8的Eden内存,即1/10的新生代内存。 -XX:MetaspaceSize:设置元空间大小 -XX:MaxMetaspaceSize:设置元空间最大允许大小,默认不受限制,JVM Metaspace会进行动态扩展
-XX:+PrintGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -Xloggc:filename
-XX:+UseSerialGC:设置串行收集器 -XX:+UseParallelGC:设置并行收集器 -XX:+UseParallelOldGC:老年代使用并行回收收集器 -XX:+UseParNewGC:在新生代使用并行收集器 -XX:+UseParalledlOldGC:设置并行老年代收集器 -XX:+UseConcMarkSweepGC:设置CMS并发收集器 -XX:+UseG1GC:设置G1收集器 -XX:ParallelGCThreads:设置用于垃圾回收的线程数
-XX:ParallelGCThreads:设置并行收集器收集时使用的CPU数。并行收集线程数。 -XX:MaxGCPauseMillis:设置并行收集最大暂停时间 -XX:GCTimeRatio:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)
-XX:+UseConcMarkSweepGC:设置CMS并发收集器 -XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。 -XX:ParallelGCThreads:设置并发收集器新生代收集方式为并行收集时,使用的CPU数。并行收集线程数。 -XX:CMSFullGCsBeforeCompaction:设定进行多少次CMS垃圾回收后,进行一次内存压缩 -XX:+CMSClassUnloadingEnabled:允许对类元数据进行回收 -XX:UseCMSInitiatingOccupancyOnly:表示只在到达阀值的时候,才进行CMS回收 -XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况 -XX:ParallelCMSThreads:设定CMS的线程数量 -XX:CMSInitiatingOccupancyFraction:设置CMS收集器在老年代空间被使用多少后触发 -XX:+UseCMSCompactAtFullCollection:设置CMS收集器在完成垃圾收集后是否要进行一次内存碎片的整理
-XX:+UseG1GC:使用G1收集器 -XX:ParallelGCThreads:指定GC工作的线程数量 -XX:G1HeapRegionSize:指定分区大小(1MB~32MB,且必须是2的幂),默认将整堆划分为2048个分区 -XX:GCTimeRatio:吞吐量大小,0-100的整数(默认9),值为n则系统将花费不超过1/(1+n)的时间用于垃圾收集 -XX:MaxGCPauseMillis:目标暂停时间(默认200ms) -XX:G1NewSizePercent:新生代内存初始空间(默认整堆5%) -XX:G1MaxNewSizePercent:新生代内存最大空间 -XX:TargetSurvivorRatio:Survivor填充容量(默认50%) -XX:MaxTenuringThreshold:最大任期阈值(默认15) -XX:InitiatingHeapOccupancyPercen:老年代占用空间超过整堆比IHOP阈值(默认45%),超过则执行混合收集 -XX:G1HeapWastePercent:堆废物百分比(默认5%) -XX:G1MixedGCCountTarget:参数混合周期的最大总次数(默认8