HashMap的底层实现为 数组+链表+红黑树(通过链地址法解决冲突);
默认容量为16,扩容时 2倍容量扩容,初始化时懒加载,当真正地添加元素时才会分配内存空间。
当链表长度达到阈值8时,同时满足扩容条件时(初始态树化的最小容量要求64 ),进行链表树化;
当红黑树元素个数因为扩容而减少到阈值6时,将进行红黑树链表化;
线程不安全原因:多线程下数据覆盖;(JDK8 链表头插法修改为了链表尾插法,从而解决了JDK7多线程下链表扩容的死循环问题)
可以存放空键值;其他线程安全的字典数据结构不能放空键或空值
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; //默认容量 16 static final int MAXIMUM_CAPACITY = 1 << 30;//HashMap 数组最大容量 1<<30 static final float DEFAULT_LOAD_FACTOR = 0.75f;//默认负载因子 static final int TREEIFY_THRESHOLD = 8;//一个桶的树化阈值 static final int UNTREEIFY_THRESHOLD = 6;//一个树的链表还原阈值 static final int MIN_TREEIFY_CAPACITY = 64;//树化的最小容量要求,为了避免进行扩容、树形化选择的冲突,这个值不能小于 4 * TREEIFY_THRESHOLD transient Node<K,V>[] table;//桶数组 transient Set<Map.Entry<K,V>> entrySet; transient int size; transient int modCount; int threshold;//扩容阈值 final float loadFactor;
//元素存储节点类 static class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key; V value; Node<K,V> next; public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } }
在不指定容量与负载因子时,会使用默认的容量16与负载因子0.75
public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity); } public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted }
扩容流程图
添加数据时使用尾插法;
2倍扩容;
扩容时,每个数组(桶)内的链表元素通过 e.hash & oldCap
分2类计算新的下标;
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; //1.为新表分配空间 @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { //2.历遍所有元素 for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do {//尾插法插入链表节点 next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
为了在计算时使用高效的位运算
在计算扩容容量时,cap为2的n次幂, tableSizeFor() 能够很快的计算出距离比cap大的最近2的幂;
在通过hash函数查找元素所在数组时, (n-1) & hash <=> hash%n
能够使用位运算代替模运算(n为2的幂才行)
除此,添加元素时,这样的hash值进行位运算时,能够充分的散列,使得添加的元素均匀分布在HashMap的每个位置上,减少hash碰撞,
static final int tableSizeFor(int cap) { int n = cap - 1; //0001XXXX n |= n >>> 1; //0001XXXX | 00001XXX = 00011XXX n |= n >>> 2; //00011XXX | 0001111X = 0001111X n |= n >>> 4; //··· n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; } //(n-1) & hash 《==》 hash%n final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; if ((e = first.next) != null) { if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key); do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; } }
添加节点流程图
public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); } // onlyIfAbsent -- if true, don't change existing value final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; //检查map是否初始化,未初始化则初始化 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; //如果元素为map该位置第一个元素,直接添加即可 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); //若不为第一个元素 else { Node<K,V> e; K k; //节点在链表头已经存在 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; //节点为红黑树结构 else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); //历遍链表 else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
本文中流程图参考自:
https://blog.csdn.net/SDDDLLL...