转载

Kafka之Java客户端的生产者模块详解(分区,拦截器,发送缓冲)

在Kafka历史变迁中,一共有两大版本的生产者客户端,一个是0.9.x之前的scala客户端;另一个是之后引入的Java客户端。当这并不代表Kafka不具有多语言的支持性。实际上,常用的语言如C/C++,Python,Go等语言都有Kafka的客户端,只不过不由官方进行维护

本文主要聊一下Java客户端的生产者模块

生产者Demo

在说明Kafka生产者相关的内容之前,先上一个生产者Demo:

public class KafkaProducerAnalysis {
	publ static final String brokerList = "localhost:9092";
	public static final String topic = "topic-demo";
	public static Properties int Config () {
		Properties props= new Properties() ;
		props.put ("bootstrap.servers", brokerList) ;
		props.put ("key.serializer","org apache kafka.common.serialization.StringSerializer") ;
		props.put("value ser alizer ","org.apache.kafka.common.serialization.StringSerializer");
		props.put ("client .id", " producer.client.id.demo") ;
		return props;
	}
	public static void main (String [] args) {
		Properties props = inittConfig();
		KafkaProducer<String , String> producer= new KafkaProducer<>(props);
		ProducerRecord<String, String> record =new ProducerRecord<> (topic,”hello , Kafka 1” ) ;
		try {
			producer.send(record);
		}catch(Exception e){
			e.printStackTrace();
		}
	}
}
复制代码

一个最简单的Producer就是这样子了

消息发送的模式

Kafka的生产者中,消息发送其实分为三种: 发后既忘( fire-and-forg 〕、同步( sync )及异步 (async)

发后既忘

一开始的Demo用的就是发后既忘的模式,调用send之后,Producer直接返回,并不关心消息是否正确到达。在大多数情况下,这样的方式都没有问题,但是某些特殊情况下(比如出现了某些不可重试的异常)就会造成消息丢失,而Producer是无法感知的。所以发送既忘的方式,性能最好,吞吐量最高,但可靠性也是最差的。

同步

同步的方法其实也很简单,这里就要先说明一下send方法的方法签名:

public Future<RecordMetadata> send(ProducerRecord<K, V> record)
public Future<RecordMetadata> send(ProducerRecord<K, V> record,Callback callback) 
复制代码

可以看到,该方法的返回值并不是void,而是一个Future接口实现类对象,有过多线程编程的童鞋应该已经知道它的作用了,就是可以以阻塞的方式获取异步执行的结果,这里就不赘述了。

然后再来看看RecordMetadata,该对象内部包含了对应消息的一些元数据,比如消息的主题,分区号,在分区中偏移量等信息,如果需要这个发送结果的话,可以调用Future的get()来获取该信息,如:

Future<RecordMetadata> future = producer.send(record);
RecordMetadata rm = future.get() //阻塞方法
//do something
复制代码

如果在发送过程中出现错误而发送出错,并且重试次数已达到上限(可通过retries参数来设置),get方法就是抛出异常,所以可以try-catch这段代码,在catch模块中进行重试等操作

同步发送吞吐量最低,但可靠性最高

异步发送

异步发送的操作也很简单,直接调用send的一个重载方法:

producer.send(record, new Callback() {
	@Override
	public void onCompletion(RecordMetadata metadata , Excepti on exception){
		if (exception ! = null) {
	exception.printStackTrace();
	} else {
		System.out.println(metadata . topic() +”-” +
			metadata . partition() + ”:” ÷metadata . offset()) ;
	}
});
复制代码

生产者整体架构

消息在从Producer客户端发送到broker的过程中,有可能会经过拦截器,序列化器,分区器等组件后才会到达broker,下面主要介绍一下拦截器和分区器。序列化器的话,其实就是对对象进行序列化和反序列化而已

先上一个生产者客户端整体架构图:

Kafka之Java客户端的生产者模块详解(分区,拦截器,发送缓冲)

生产者拦截器

拦截器是Kafka在0.10.0.0版本引入的一个功能。拦截器其实分为生产者拦截器和消费者拦截器,这里主要讲生产者拦截器。

在Kafka中,生产者拦截器的定义接口为:org.apache.kafka.clients.producer.Producerlnterceptor

其中的方法有三个:

public ProducerRecord<K, V> onSend (ProducerRecord<K, V> record );
public void onAcknowledgement(RecordMetadata metadata , Exception exception);
public void close() ; 
复制代码

onSend方法就是消息进行序列化和计算分区之前执行的一个逻辑,可以看到直接把record对象发过来了,所以理论上可以对消息实体进行任意改变(当然,topic,key等信息还是不要改比较好,有可能会影响其他部分)

onAcknowledgement方法在消息应答或者消息发送失败时被调用,先于异步发送中的Callback执行,并且该方法是由Kafka Producer的IO线程执行的,所以该方法不应该执行太久,或者影响吞吐量

生产者拦截器Demo:

public class ProducerinterceptorPrefix implements Producerinterceptor<String, String>{

	@Override
	public ProducerRecord<String,String> onSend(ProducerRecord<String,String> record){
		String newStr = "prefix-"+record.value();
		return new ProducerRecord<>(record.topic,record.partition(),record.timestamp(),record.key,
								newStr,record.headers());
	}
    
    //这个方法可以用来统计消息发送成功率之类的
	@Override
	public void onAcknowledgement(RecordMetadata recordMetadata,Exception e){}
	
	@Override
	public void close(){}
	
	@Override
	public void configure(Map<String,?>map){}


}
复制代码

怎么生效呢?好办:

props.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG ,ProducerinterceptorPrefix.class.getName()); 
复制代码

这样,Producer发送消息:msg 而消费者接受到的就是prefix-msg了

分区器

经历了拦截器,然后就是序列化器,下一步,如果Producer在发送信息时没有显式指定分区的号,接下来就会进入到是分区器了,在这一步,主要是进行分区的计算

Kafka中的分区器实现接口是:org.apache kafka.clients. producer.Partitioner

其下有两个方法:

public int partition(String topic,Object key,byte[] keyBytes,Object value,byte[] valueBytes,Cluster cluster) ;
public void close() ; 
复制代码

partition方法就是返回分区的下标。Kafka提供的默认分区器是org.apache.kafka.clients.producer.internals.DefaultPartitioner,在partition方法中采用了MurmurHash2算法

自定义分区器Demo:

public class MyPartitioner implements Partitioner {
	@Override
	public int partition(String topic,Object key,byte[] keyBytes,Object value,byte[] 									valueBytes,Cluster cluster) {
		List<Partitionlnfo> partitions= cluster .partitionsForTopic(topic) ;
		int numPartitions =partitions.size();
		if (null == keyBytes) {
			return counter.getAndincrement () numPartitions
		}else{
			return Utils.toPositive(Utils.murmur2(keyBytes)%numPartitions;
		}
	}
	
	@Override 
	publ raid close () { }
	
	@Override
	public raid configure (Map<String , ?> configs) {} 
复制代码

怎么能生效呢?同样的,在Properties里面配置:

props.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,MyPartitioner. class.getName() ) ; 
复制代码

RecordAccumulator

这是个啥玩意?Kafka Producer为了减少网络通信次数,提高发送效率,并不会对每一个信息都进行一次单独的发送,而是整合到一个缓冲区里面,进行统一的发送。类比于TCP发送端的Nagle算法

RecordAccumulator缓冲区的大小由参数buffer.memory决定,默认为33554432B,即32MB。如果发送速度过快导致缓冲区被占满,send方法将阻塞,最长时间由max.block.ms设置,默认值为60000,即60s。超时则抛出异常。

RecordAccumulator内以分区为单位,为每个分区维护一个双端队列,消息进来的时候,从尾端插入队列,Sender线程从队列头取出消息并发送。

队列中的结点为:ProducerBatch 即队列签名为:Deque .哎?ProducerBatch是啥,为什么不是ProducerRecord,它们的关系是啥?实际上,ProducerBatch包含多个ProducerRecord,消息发送的基本单位是ProducerBatch。

当一个ProducerRecord到达RecordAccumulator时,会先找到自己分区对应的队列,然后查看队列尾端的ProducerBatch是否能容纳这个ProducerRecord,如果可以,直接写入;否则,创建一个新的ProducerBatch再写入

原文  https://juejin.im/post/5f003fe75188252e415f4d6f
正文到此结束
Loading...