意外和明天不知道哪个先来。没有危机是最大的危机,满足现状是最大的陷阱。
生产环境偶尔会有一些慢请求导致系统性能下降,吞吐量下降,下面介绍几种优化建议。
电子商务类型网站大多都是短请求,一般响应时间都在100ms,这时可以将web容器从tomcat替换为undertow,下面介绍下步骤:1、增加pom配置
<dependency> <groupid> org.springframework.boot </groupid> <artifactid> spring-boot-starter-web </artifactid> <exclusions> <exclusion> <groupid> org.springframework.boot </groupid> <artifactid> spring-boot-starter-tomcat </artifactid> </exclusion> </exclusions> </dependency> <dependency> <groupid> org.springframework.boot </groupid> <artifactid> spring-boot-starter-undertow </artifactid> </dependency>
2、增加相关配置
server: undertow: direct-buffers: true io-threads: 4 worker-threads: 160
重新启动可以在控制台看到容器已经切换为undertow了
将部分热点数据或者静态数据放到本地缓存或者redis中,如果有需要可以定时更新缓存数据
在代码过程中我们很多代码都不需要等返回结果,也就是部分代码是可以并行执行,这个时候可以使用异步,最简单的方案是使用springboot提供的@Async注解,当然也可以通过线程池来实现,下面简单介绍下异步步骤。1、pom依赖 一般springboot引入web相关依赖就行
<dependency> <groupid> org.springframework.boot </groupid> <artifactid> spring-boot-starter-web </artifactid> </dependency>
2、在启动类中增加@EnableAsync注解
import org.springframework.boot.SpringApplication @EnableAsync @SpringBootApplication public class AppApplication { public static void main(String[] args) { SpringApplication.run(AppApplication.class, args); } }
3、需要时在指定方法中增加@Async注解,如果是需要等待返回值,则demo如下
@Async public Future<String> doReturn(int i) { try { // 这个方法需要调用500毫秒 Thread.sleep(500); } catch (InterruptedException e) { e.printStackTrace(); } // 消息汇总 return new AsyncResult<String>("异步调用"); }
4、如果有线程变量或者logback中的mdc,可以增加传递
import org.slf4j.MDC; import org.springframework.context.annotation.Configuration; import org.springframework.core.task.TaskDecorator; import org.springframework.scheduling.annotation.AsyncConfigurerSupport; import org.springframework.scheduling.annotation.EnableAsync; import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor; import java.util.Map; import java.util.concurrent.Executor; /** * @Description: */ @EnableAsync @Configuration public class AsyncConfig extends AsyncConfigurerSupport { @Override public Executor getAsyncExecutor() { ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor(); executor.setTaskDecorator(new MdcTaskDecorator()); executor.initialize(); return executor; } } class MdcTaskDecorator implements TaskDecorator { @Override public Runnable decorate(Runnable runnable) { Map<string, string> contextMap = MDC.getCopyOfContextMap(); return () - & gt; { try { MDC.setContextMap(contextMap); runnable.run(); } finally { MDC.clear(); } }; } }
5、有时候异步需要增加阻塞
import lombok.extern.slf4j.Slf4j; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor; import java.util.concurrent.Executor; import java.util.concurrent.ThreadPoolExecutor; @Configuration @Slf4j public class TaskExecutorConfig { @Bean("localDbThreadPoolTaskExecutor") public Executor threadPoolTaskExecutor() { ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor(); taskExecutor.setCorePoolSize(5); taskExecutor.setMaxPoolSize(200); taskExecutor.setQueueCapacity(200); taskExecutor.setKeepAliveSeconds(100); taskExecutor.setThreadNamePrefix("LocalDbTaskThreadPool"); taskExecutor.setRejectedExecutionHandler((Runnable r, ThreadPoolExecutor executor) - & gt; { if (!executor.isShutdown()) { try { Thread.sleep(300); executor.getQueue().put(r); } catch (InterruptedException e) { log.error(e.toString(), e); Thread.currentThread().interrupt(); } } } ); taskExecutor.initialize(); return taskExecutor; } }
可以将比较耗时或者不同的业务拆分出来提供单节点的吞吐量
有很多场景对数据实时性要求不那么强的,或者对业务进行业务容错处理时可以将消息发送到kafka,然后延时消费。举个例子,根据条件查询指定用户发送推送消息,这里可以时按时、按天、按月等等,这时就