转载

缓存架构:如何减少不必要的计算?

互联网应用的主要挑战就是在高并发情况下,大量的用户请求到达应用系统服务器,造成了巨大的计算压力。互联网应用的核心解决思路就是采用分布式架构,提供更多的服务器,从而提供更多的计算资源,以应对高并发带来的计算压力及资源消耗。

缓存架构:如何减少不必要的计算?

那么有没有办法减少到达服务器的并发请求压力呢?或者请求到达服务器后,有没有办法减少不必要的计算,降低服务器的计算资源消耗,尽快返回计算结果给用户呢?

有,解决的核心就是缓存。

所谓缓存,就是将需要多次读取的数据暂存起来,这样在后面,应用程序需要多次读取的时候,就不必从数据源重复加载数据了,这样就可以降低数据源的计算负载压力,提高数据响应速度。

一般说来,缓存可以分成两种,通读缓存和旁路缓存。

通读(read-through)缓存,应用程序访问通读缓存获取数据的时候,如果通读缓存有应用程序需要的数据,那么就返回这个数据;如果没有,那么通读缓存就自己负责访问数据源,从数据源获取数据返回给应用程序,并将这个数据缓存在自己的缓存中。这样,下次应用程序需要数据的时候,就可以通过通读缓存直接获得数据了。

通读缓存在架构中的位置与作用如下图:

缓存架构:如何减少不必要的计算?

旁路(cache-aside)缓存,应用程序访问旁路缓存获取数据的时候,如果旁路缓存中有应用程序需要的数据,那么就返回这个数据;如果没有,就返回空(null)。应用程序需要自己从数据源读取数据,然后将这个数据写入到旁路缓存中。这样,下次应用程序需要数据的时候,就可以通过旁路缓存直接获得数据了。

旁路缓存在架构中位置与作用如下图:

缓存架构:如何减少不必要的计算?

通读缓存

互联网应用中主要使用的通读缓存是 CDN 和反向代理缓存。

CDN(Content Delivery Network)即内容分发网络。我们上网的时候,App 或者浏览器想要连接到互联网应用的服务器,需要网络服务商,比如移动、电信这样的服务商为我们提供网络服务,建立网络连接才可以上网。

而这些服务商需要在全国范围内部署骨干网络、交换机机房才能完成网络连接服务,这些交换机机房可能会离用户非常近,那么互联网应用能不能在这些交换机机房中部署缓存缓存服务器呢?这样,用户就可以近距离获得自己需要的数据,既提高了响应速度,又节约了网络带宽和服务器资源。

当然可以。这个部署在网络服务商机房中的缓存就是 CDN,因为距离用户非常近,又被称作网络连接的第一跳。目前很多互联网应用大约 80% 以上的网络流量都是通过 CDN 返回的。

缓存架构:如何减少不必要的计算?

CDN 只能缓存静态数据内容,比如图片、CSS、JS、HTML 等内容。而动态的内容,比如订单查询、商品搜索结果等必须要应用服务器进行计算处理后才能获得。因此,互联网应用的静态内容和动态内容需要进行分离,静态内容和动态内容部署在不同的服务器集群上,使用不同的二级域名,即所谓的动静分离,一方面便于运维管理,另一方面也便于 CDN 进行缓存,使 CDN 只缓存静态内容。

反向代理缓存也是一种通读缓存。我们上网的时候,有时候需要通过代理上网,这个代理是代理我们的客户端上网设备。而反向代理则代理服务器,是应用程序服务器的门户,所有的网络请求都需要通过反向代理才能到达应用程序服务器。既然所有的请求都需要通过反向代理才能到达应用服务器,那么在这里加一个缓存,尽快将数据返回给用户,而不是发送给应用服务器,这就是反向代理缓存。

缓存架构:如何减少不必要的计算?

用户请求到达反向代理缓存服务器,反向代理检查本地是否有需要的数据,如果有就直接返回,如果没有,就请求应用服务器,得到需要的数据后缓存在本地,然后返回给用户。

旁路缓存

CDN 和反向代理缓存通常会作为系统架构的一部分,很多时候对应用程序是透明的。而应用程序在代码中主要使用的是对象缓存,对象缓存是一种旁路缓存。

不管是通读缓存还是旁路缓存,缓存通常都是以

对于

程序中使用的对象缓存,可以分成两种。一种是本地缓存,缓存和应用程序在同一个进程中启动,使用程序的堆空间存放缓存数据。本地缓存的响应速度快,但是缓存可以使用的内存空间相对比较小,但是对于大型互联网应用所需要缓存的数据通以 T 计,这时候就要使用远程的分布式缓存了。

分布式缓存是指将一组服务器构成一个缓存集群,共同对外提供缓存服务,那么应用程序在每次读写缓存的时候,如何知道要访问缓存集群中的哪台服务器呢?我们以 Memcached为例,看看分布式缓存的架构:

缓存架构:如何减少不必要的计算?

Memcached 将多台服务器构成一个缓存集群,缓存数据存储在每台服务器的内存中。事实上,使用缓存的应用程序服务器通常也是以集群方式部署的,每个程序需要依赖一个Memcached 的客户端 SDK,通过 SDK 的 API 访问 Memcached 的服务器。

应用程序调用 API,API 调用 SDK 的路由算法,路由算法根据缓存的 key 值,计算这个key 应该访问哪台 Memcached 服务器,计算得到服务器的 IP 地址和端口号后,API 再调用 SDK 的通信模块,将

那么,路由算法又是如何计算得到 Memcached 的服务器 IP 端口呢?比较简单的一种方法,和 Hash 算法一样,利用 key 的 Hash 值对服务器列表长度取模,根据余数就可以确定服务器列表的下标,进而得到服务器的 IP 和端口。

缓存注意事项

使用缓存可以减少不必要的计算,能够带来三个方面的好处:

  1. 缓存的数据通常存储在内存中,距离使用数据的应用也更近一点,因此相比从硬盘上获取,或者从远程网络上获取,它获取数据的速度更快一点,响应时间更快,性能表现更好。
  2. 缓存的数据通常是计算结果数据,比如对象缓存中,通常存放经过计算加工的结果对象,如果缓存不命中,那么就需要从数据库中获取原始数据,然后进行计算加工才能得到结果对象,因此使用缓存可以减少 CPU 的计算消耗,节省计算资源,同样也加快了处理的速度。
  3. 通过对象缓存获取数据,可以降低数据库的负载压力;通过 CDN、反向代理等通读缓存获取数据,可以降低服务器的负载压力。这些被释放出来的计算资源,可以提供给其他更有需要的计算场景,比如写数据的场景,间接提高整个系统的处理能力。

但是缓存也不是万能的,如果不恰当地使用缓存,也可能会带来问题。

首先就是数据脏读的问题,缓存的数据来自数据源,如果数据源中的数据被修改了,那么缓存中的数据就变成脏数据了。

主要解决办法有两个,一个是过期失效,每次写入缓存中的数据都标记其失效时间,在读取缓存的时候,检查数据是否已经过期失效,如果失效,就重新从数据源获取数据。缓存失效依然可能会在未失效时间内读到脏数据,但是一般的应用都可以容忍较短时间的数据不一致,比如淘宝卖家更新了商品信息,那么几分钟数据没有更新到缓存,买家看到的还是旧数据,这种情况通常是可以接受的,这时候,就可以设置缓存失效时间为几分钟。

另一个办法就是失效通知,应用程序更新数据源的数据,同时发送通知,将该数据从缓存中清除。失效通知看起来数据更新更加及时,但是实践中,更多使用的还是过期失效。

此外,并不是所有数据使用缓存都有意义。在互联网应用中,大多数数据访问都是有热点的,比如热门微博会被更多阅读,热门商品会被更多浏览。那么将这些热门的数据保存在缓存中是有意义的,因为缓存通常使用内存,存储空间比较有限,只能存储有限的数据,热门数据存储在缓存中,可以被更多次地读取,缓存效率也比较高。

相反,如果缓存的数据没有热点,写入缓存的数据很难被重复读取,那么使用缓存就不是很有必要了。

总结

缓存是优化软件性能的杀手锏,任何需要查询数据、请求数据的场合都可以考虑使用缓存。缓存几乎是无处不在的,程序代码中可以使用缓存,网络架构中可以使用缓存,CPU、操作系统、虚拟机也大量使用缓存,事实上,缓存最早就是在 CPU 中使用的。对于一个典型的互联网应用而言,使用缓存可以解决绝大部分的性能问题,如果需要优化软件性能,那么可以优先考虑哪里可以使用缓存改善性能。

除了本文提到的系统架构缓存外,客户端也可以使用缓存,在 App 或者浏览器中缓存数据,甚至都不需要消耗网络带宽资源,也不会消耗 CDN、反向代理的内存资源,更不会消耗服务器的计算资源。

原文  http://stor.51cto.com/art/202007/620762.htm
正文到此结束
Loading...