如果说 图灵(Alan Turing) 奠定的是计算机的理论基础,那么 冯·诺依曼(John Von Neumann) 则是将图灵的理论物化成为实际的物理实体,成为了计算机体系结构的奠基者。从第一台冯·诺依曼计算机诞生到今天已经过去了将近70年,计算机的技术与性能也都发生了巨大的变化,但整个主流体系结构依然是冯·诺依曼结构。
冯·诺依曼体系结构的特点:采用二进制,硬件由5个部分组成(运算器、控制器、存储器、输入设备和输出设备),提出了“存储程序”原理,使用同一个存储器,经由同一个总线传输,程序和数据统一存储同时在程序控制下自动工作。特别要指出,它的程序指令存储器和数据存储器是合并在一起的,程序指令存储地址和数据存储地址指向同一个存储器的不同物理位置。因为程序指令和数据都是用二进制码表示,且程序指令和被操作数据的地址又密切相关,所以早先选择这样的结构是合理的。
但是,随着对计算机处理速度要求的提高和对需要处理数据的种类、量级的增大,这种指令和数据共用一个总线的结构,使得信息流的传输成为限制计算机性能的一个瓶颈,制约了数据处理速度的提高。由此,体现出了冯·诺依曼体系结构的局限性:
科学家们一直在努力突破传统的冯·诺依曼体系结构框架,对冯·诺依曼计算机进行改良,主要体现在:
近几年,在计算机体系结构研究方面也已经有了重大进展,越来越多的非冯计算机相继出现,如光子计算机、量子计算机、神经计算机以及DNA计算机等等。
光子计算机 (Photonic computer)是一种采用光信号作为物质介质和信息载体,依靠激光束进入反射镜和透镜组成的阵列进行数值运算、逻辑操作和信息的存储和处理。它可以实现对复杂度高、计算量大、实时性强的任务的高效、并行处理,比普通电子计算机快1000倍,在图像处理、模式识别和人工智能方面有着非常巨大的应用前景。
神经计算机 (Neural computer)是一种可以并行处理多种数据功能的神经网络计算机,它以神经元为处理信息的基本单元,将模仿大脑神经记忆的信息存放在神经元上。神经网络具有自组织、自学习、自适应及自修复功能,可以模仿人脑的判断能力和适应能力。美国科学家研究出的神经计算机可以模拟人的左脑和右脑,能识别语言文字和图形图像,能控制机器人行为,进行智能决策。它的左脑由100万个神经元组成,用于存储文字和语法规则,右脑由1万多个神经元组成,适用于图形图像识别。这将有可能成为人工智能硬件发展的主攻方向。
量子计算机 (Quantum computer)是遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。量子计算机本身的特性,扩充了逻辑和数学理论,通过核自旋、光子、束缚离子和原子等制成的量子位,创造出经典条件下不可能存在的新的逻辑门。与经典的比特位不同,对量子位操作1次等同于对经典位操作2次,因为量子不像半导体只能记录0和1,它可以同时表示多种状态。这些都为新的算法实现提供了条件,也为人工智能的发展提供了可能的硬件条件。
冯·诺依曼计算机以其技术成熟、价格低廉、软件丰富和大众的使用习惯,可能在今后很长的一段时期里还将为人类的工作和生活发挥着重要作用。当然,为了满足人们对计算机更快速、更高效、更方便的使用要求,为了让计算机能够模拟人脑神经元和脑电信号脉冲这样复杂的结构,就需要突破现有的体系结构框架并寻求新的物质介质作为计算机的信息载体,才能使计算机有质的飞跃。随着非冯计算机的商品化问世,我们将会迎来一个崭新的信息时代
感谢魏星对本文的审校。
给InfoQ中文站投稿或者参与内容翻译工作,请邮件至editors@cn.infoq.com。也欢迎大家通过新浪微博(@InfoQ,@丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入InfoQ读者交流群 )。