图灵测试是人工智能的梦想,它所要完成的任务是机器智能判定实验,即让机器和人能够通过自然语言对话(Natural Language Dialogue,NLD)来沟通。这项长期困扰研究人员的工作,因为深度学习的引入,有了新的进展。
最新的NLD工作,在基于检索的对话中引入深度学习,华为诺亚方舟实验室(简称诺亚)是最早开始此项工作的玩家之一。从2013年开始,诺亚在短文本对话领域有一系列的工作【1】【2】【3】。今年3月初,诺亚的研究人员在arXiv上公布的一篇论文(这篇文章也将在今年7月的ACL会议上发表【4】),第一次提出了完全基于神经网络的对话模型“ 神经响应机 ”(Neural Responding Machine,NRM),用于人机之间的单轮对话(single-turn dialog)。
诺亚研究人员介绍, 对用户说的话,NRM用一种混合机制来进行表示,从而既对文本有整体的把握,又充分保留了句子的细节信息。在对输入问题的表示的基础上,NRM采用了递归神经网络(Recurrent Neural Network)来逐字的生成自然语言的句子作为回复。 NRM从五百万个(微博,回复)对中学习人的回复,这些学到的模式存于系统的近四百万参数中。因为 NRM中部分采用了attention的机制,可以相对容易掌握比较复杂的模式 ,如:
人 : 你好,我是利锋。
当然,NRM以及随后出现的类似模型,如Google的Neural Conversational Model(NCM)【5】, 还停留在对复杂语言模式记忆和组合上,尚无法在对话中使用外界的知识。例如,在对“看了昨晚恒大的比赛了吗?”这样的句子,无法给出真实的状况(例如昨晚恒大比赛的结果)相关的回复。
但依旧不能否认NRM的意义。此前的近几十年,研究人员不懈努力而生成的对话系统(dialogue model),大都是基于规则和模板, 或者是在一个较大的对话数据库中进行搜索。这种两种方式并非真正的产生对话,又缺乏对语言的有效理解和表示。囿于模板/例子的数量和表示的局限性,这些方式在准确性和灵活性上都存在一定的不足,很难兼顾语言的自然通顺和内容的适当切题,效果与引入深度学习的模型不可同日而语。
所以说,NRM模型的提出,更多的可能性和想象空间才刚刚开始。事实上,诺亚已经以此为基础展开深度学习在对话方面的深入研究,包括多轮对话(multi-turn dialog),与强化学习(reinforcement learning)结合的对话管理,以及在对话中引入知识(knowledge)等。
参考文献
【1】 H. Wang, Z. Lu, H. Li, E. Chen. A Dataset for Research on Short-text Conversations. In Proceedings of EMNLP, 2013
【2】 Z. Ji, Z. Lu, H. Li. An information Retrieval Approach to Short-text Conversation. arXiv: 1408.6988, 2014.
【3】 B. Hu, Z. Lu, H. Li, Q. Chen. Convolutional Neural Network Architectures for Matching Natural Language Sentences. In Advances of NIPS, 2014
【4】 L. Shang, Z. Lu, and H. Li. Neural Responding Machine for Short-text Conversation. In Proceedings of ACL,2015.
【5】O. Vinyals, and Q. V. Le. A Neural Conversational Model. arXiv: 1506.05869,2015
【预告】 2015中国人工智能大会(CCAI 2015) 将于7月26-27日在北京友谊宾馆召开。机器学习与模式识别、大数据的机遇与挑战、人工智能与认知科学、智能机器人四个主题专家云集。人工智能产品库将同步上线,预约咨询:QQ:1192936057。欢迎关注。